フルフレックス制×従業員数101〜500人のリモートワーク転職・求人情報一覧 -2ページ目
345件中 11件~20件
株式会社Laboro.AI
【全国フルリモート×フルフレックス】機械学習エンジニア/リーダー候補!ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで
全てを自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで
全てを自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 600 〜 900 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】LLMエンジニア!/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
LLM専属のエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、LLMモデルの検証/開発/改善、結果のレポーティング、
LLMを用いたシステムの開発等に関わっていただきます。
(プロジェクトごとに、リードエンジニアが1名サポートにつきます。)
またLLMに関連する最新技術のキャッチアップ、社内への展開、及びマルチエージェントシステムのための
フレームワーク開発などをお任せする予定です。
<具体的な業務イメージ>
・LLMを用いたクライアントプロジェクトへの参画、及びソリューションの開発
・LLMに関連する最新技術のキャッチアップ、社内への展開
・マルチエージェントシステムのためのフレームワーク開発
・社内プロジェクトメンバーや顧客への技術的な説明
・LLMを用いたシステム開発PJにおけるLLMの精度検証・チューニング
■ポジションの魅力
・常に新しいLLM技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題をLLM技術で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つLLM技術応用やLLMシステム開発に携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。
プロジェクトの始まりから終わりまで全てを自らの手で牽引したいと思われている方にとっては
非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、
希望に応じてエンジニアもフロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で
自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
LLM専属のエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、LLMモデルの検証/開発/改善、結果のレポーティング、
LLMを用いたシステムの開発等に関わっていただきます。
(プロジェクトごとに、リードエンジニアが1名サポートにつきます。)
またLLMに関連する最新技術のキャッチアップ、社内への展開、及びマルチエージェントシステムのための
フレームワーク開発などをお任せする予定です。
<具体的な業務イメージ>
・LLMを用いたクライアントプロジェクトへの参画、及びソリューションの開発
・LLMに関連する最新技術のキャッチアップ、社内への展開
・マルチエージェントシステムのためのフレームワーク開発
・社内プロジェクトメンバーや顧客への技術的な説明
・LLMを用いたシステム開発PJにおけるLLMの精度検証・チューニング
■ポジションの魅力
・常に新しいLLM技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題をLLM技術で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つLLM技術応用やLLMシステム開発に携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。
プロジェクトの始まりから終わりまで全てを自らの手で牽引したいと思われている方にとっては
非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、
希望に応じてエンジニアもフロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で
自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 600 〜 1,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】UI/UXデザイナー!/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
クライアントが抱える本質的な課題を解決する「カスタムAI」ソリューションのUI/UXデザイン全般をお任せします。
プロジェクトの最上流から参画し、ビジネスとテクノロジー、そしてユーザー体験を繋ぐハブとしての役割を期待しています。
また弊社では初めて採用するUIUXデザイナーの方となりますので、
デザイナーの組織づくりを牽引いただく役割も持っていただければと考えております。
<具体的な業務イメージ>
▼課題発見・要件定義:
クライアントへのヒアリングやワークショップを通じて、ビジネス要件とユーザーニーズを深く理解し、
解決すべきデザイン課題を定義します。
▼情報設計・プロトタイピング:
複雑なAIのロジックやデータを、ユーザーにとって価値ある体験として再構築するための情報設計、
ワイヤーフレーム、プロトタイプの作成を行います。
▼UIデザイン:
プロトタイプを元に、ユーザビリティと美しさを両立させたUIデザインを作成します。
デザインシステムの構築・運用にも携わっていただきます。
▼ユーザー検証:
ユーザビリティテストなどを計画・実施し、仮説検証を繰り返しながらデザインの品質を高めます。
▼チーム連携:
プロジェクトマネージャー、機械学習・システム開発エンジニア、コンサルタントなど、
多様な専門性を持つメンバーと密に連携し、プロダクト開発を推進します。
■ポジションの魅力
・担当する案件に応じて、求められるUIUXの概念、形が異なり、0ベースで検討することができること。
・AIを用いたシステムであることから、UIUXにおいてよりユーザの操作を不要とするような斬新なUIUXが必要になること。
・AIを活用した複雑な業務フローを簡易的に操作できるUIUXが必要になるため、UIUXを考える難易度が高いこと。
・組織のあり方を主体的に創造することができること。
■募集要項
最先端のAI技術を、誰もが直感的に使える形へ。
私たちは、まだ世にない価値をデザインの力で社会に実装するUI/UXデザイナーを募集しています。
アカデミアで研究される最新の機械学習技術と、ビジネスの現場にあるリアルな課題。
その二つを繋ぎ、複雑なソリューションに「使いやすさ」という命を吹き込む、非常に難易度が高く、やりがいのあるポジションです。
各分野のトップランナーである機械学習・システム開発エンジニアやコンサルタントと共に、デザインの力で社会課題を解決しませんか?
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
クライアントが抱える本質的な課題を解決する「カスタムAI」ソリューションのUI/UXデザイン全般をお任せします。
プロジェクトの最上流から参画し、ビジネスとテクノロジー、そしてユーザー体験を繋ぐハブとしての役割を期待しています。
また弊社では初めて採用するUIUXデザイナーの方となりますので、
デザイナーの組織づくりを牽引いただく役割も持っていただければと考えております。
<具体的な業務イメージ>
▼課題発見・要件定義:
クライアントへのヒアリングやワークショップを通じて、ビジネス要件とユーザーニーズを深く理解し、
解決すべきデザイン課題を定義します。
▼情報設計・プロトタイピング:
複雑なAIのロジックやデータを、ユーザーにとって価値ある体験として再構築するための情報設計、
ワイヤーフレーム、プロトタイプの作成を行います。
▼UIデザイン:
プロトタイプを元に、ユーザビリティと美しさを両立させたUIデザインを作成します。
デザインシステムの構築・運用にも携わっていただきます。
▼ユーザー検証:
ユーザビリティテストなどを計画・実施し、仮説検証を繰り返しながらデザインの品質を高めます。
▼チーム連携:
プロジェクトマネージャー、機械学習・システム開発エンジニア、コンサルタントなど、
多様な専門性を持つメンバーと密に連携し、プロダクト開発を推進します。
■ポジションの魅力
・担当する案件に応じて、求められるUIUXの概念、形が異なり、0ベースで検討することができること。
・AIを用いたシステムであることから、UIUXにおいてよりユーザの操作を不要とするような斬新なUIUXが必要になること。
・AIを活用した複雑な業務フローを簡易的に操作できるUIUXが必要になるため、UIUXを考える難易度が高いこと。
・組織のあり方を主体的に創造することができること。
■募集要項
最先端のAI技術を、誰もが直感的に使える形へ。
私たちは、まだ世にない価値をデザインの力で社会に実装するUI/UXデザイナーを募集しています。
アカデミアで研究される最新の機械学習技術と、ビジネスの現場にあるリアルな課題。
その二つを繋ぎ、複雑なソリューションに「使いやすさ」という命を吹き込む、非常に難易度が高く、やりがいのあるポジションです。
各分野のトップランナーである機械学習・システム開発エンジニアやコンサルタントと共に、デザインの力で社会課題を解決しませんか?
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 600 〜 900 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 勤務形態 |
作業時間: フルフレックス制度
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】MLOpsエンジニア/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
クライアントのビジネス課題解決のため、機械学習エンジニアが開発したAIモデルを円滑に本番環境へ届け、
その価値を最大化し続けるための「機械学習基盤」と「MLOpsパイプライン」の設計、構築、運用をリードしていただきます。
<ミッション>
単にインフラを構築するだけでなく、「データが生まれてから、AIモデルとして価値を発揮し続けるまで」の
一連の流れを自動化・効率化する仕組みを創り上げることがミッションです。
<業務イメージ>
①データ基盤の整備(ETLパイプライン)
ビジネスデータを蓄積するためのデータレイクやDWHを準備します。
データが溜まったら、機械学習エンジニアが利用しやすい形に情報を加工・整理するETLパイプラインを構築します。
②AI開発環境と機械学習パイプラインの構築
加工されたデータを容易に呼び出せる、Jupyter Notebookなどの開発環境を準備します。
モデルの学習・評価を自動化する「機械学習パイプライン」を構築します。
③モデル配信と運用(デプロイメントパイプライン)
開発されたAIモデルを、システム開発エンジニアが作るアプリケーションに簡単に組み込めるよう、
API化して配信する「デプロイメントパイプライン」を構築します。
モデルの精度を自動でモニタリングし、精度が低下した際に再学習を促す仕組みを構築します。
上記の仕組み全体をテンプレート化し、様々なプロジェクトで再利用できるようにすることで、
会社全体のAI開発の生産性向上を担っていただきたいです。
また、モデルの再現性や公平性を担保するモデルガバナンスの実現も重要な役割です。
OSSやクラウドのマネージドサービスなど既存のミドルウェアを最適に組み合わせ、
「どうすれば価値を最大化できるか」を考えるアーキテクトとしての役割も期待しています。
■本ポジションの魅力
・日本を代表する大手企業のプロジェクトへ主体的に参画することができる。
・最先端の技術を活用したML基盤の構築、運用に関わることができる。
・MLOpsにチャレンジしたい、もっと大きな視野で仕事をしたいという想いを叶えることができる。
・大手企業向けにカスタムAIを提供している優秀なコンサルやエンジニアと共に仕事ができる。
・新組織作り(組織体制や評価制度など)へ主体的に関わることができる。
■募集要項
Laboro.AIは「全ての産業の新たな姿を作る」、「テクノロジーとビジネスを、つなぐ」をミッションに、
お客様の課題に沿ってオーダーメイドのAIソリューション『カスタムAI』を提供します。
私たちの強みは、アカデミックな知見とビジネス現場への深い理解を両立させ、
クライアントの真の課題解決に貢献するAIを開発・導入できること。多様な業界でAIプロジェクトが急速に拡大する中、
AI開発の品質とスピードを飛躍的に向上させる「MLOps基盤」の存在が不可欠となっています。
今回募集するのは、データからモデル、そしてビジネス価値創出までを繋ぐ
「仕組み」を構築するMLOpsエンジニアです。機械学習エンジニアがモデル開発に真に集中できる環境を創り出し、
AIの社会実装を根幹から支える。そんなダイナミックな役割に、私たちと共に挑戦しませんか?
【業務の変更の範囲】
無
クライアントのビジネス課題解決のため、機械学習エンジニアが開発したAIモデルを円滑に本番環境へ届け、
その価値を最大化し続けるための「機械学習基盤」と「MLOpsパイプライン」の設計、構築、運用をリードしていただきます。
<ミッション>
単にインフラを構築するだけでなく、「データが生まれてから、AIモデルとして価値を発揮し続けるまで」の
一連の流れを自動化・効率化する仕組みを創り上げることがミッションです。
<業務イメージ>
①データ基盤の整備(ETLパイプライン)
ビジネスデータを蓄積するためのデータレイクやDWHを準備します。
データが溜まったら、機械学習エンジニアが利用しやすい形に情報を加工・整理するETLパイプラインを構築します。
②AI開発環境と機械学習パイプラインの構築
加工されたデータを容易に呼び出せる、Jupyter Notebookなどの開発環境を準備します。
モデルの学習・評価を自動化する「機械学習パイプライン」を構築します。
③モデル配信と運用(デプロイメントパイプライン)
開発されたAIモデルを、システム開発エンジニアが作るアプリケーションに簡単に組み込めるよう、
API化して配信する「デプロイメントパイプライン」を構築します。
モデルの精度を自動でモニタリングし、精度が低下した際に再学習を促す仕組みを構築します。
上記の仕組み全体をテンプレート化し、様々なプロジェクトで再利用できるようにすることで、
会社全体のAI開発の生産性向上を担っていただきたいです。
また、モデルの再現性や公平性を担保するモデルガバナンスの実現も重要な役割です。
OSSやクラウドのマネージドサービスなど既存のミドルウェアを最適に組み合わせ、
「どうすれば価値を最大化できるか」を考えるアーキテクトとしての役割も期待しています。
■本ポジションの魅力
・日本を代表する大手企業のプロジェクトへ主体的に参画することができる。
・最先端の技術を活用したML基盤の構築、運用に関わることができる。
・MLOpsにチャレンジしたい、もっと大きな視野で仕事をしたいという想いを叶えることができる。
・大手企業向けにカスタムAIを提供している優秀なコンサルやエンジニアと共に仕事ができる。
・新組織作り(組織体制や評価制度など)へ主体的に関わることができる。
■募集要項
Laboro.AIは「全ての産業の新たな姿を作る」、「テクノロジーとビジネスを、つなぐ」をミッションに、
お客様の課題に沿ってオーダーメイドのAIソリューション『カスタムAI』を提供します。
私たちの強みは、アカデミックな知見とビジネス現場への深い理解を両立させ、
クライアントの真の課題解決に貢献するAIを開発・導入できること。多様な業界でAIプロジェクトが急速に拡大する中、
AI開発の品質とスピードを飛躍的に向上させる「MLOps基盤」の存在が不可欠となっています。
今回募集するのは、データからモデル、そしてビジネス価値創出までを繋ぐ
「仕組み」を構築するMLOpsエンジニアです。機械学習エンジニアがモデル開発に真に集中できる環境を創り出し、
AIの社会実装を根幹から支える。そんなダイナミックな役割に、私たちと共に挑戦しませんか?
【業務の変更の範囲】
無
| 想定年収 | 800 〜 1,200 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制度
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社エムニ
【フルリモ/スーパーフレックス/東京・京都/AI・機械学習エンジニア/Pythonを用いたAI/機械学習モデルの実務開発経験2年以上】東大・京大発、学術知見で製造業にAI革新を牽引する企業! のリモートワーク求人
【募集背景】
事業成長による増員募集です。
製造業をはじめ日本を代表するエンタープライズ企業のお客様からのご依頼が増え、PoC だけでなく本開発・運用まで見据えた長期的な協業が多くなっており、有償契約は創業2年で累計100件にのぼります。
また、特許・図面・技能伝承など、製造業特化の新しいプロダクト領域も次々に立ち上がりつつあります。
こうした事業の広がりに伴い、AIモデル開発を担うエンジニアの活躍機会が大きく増えている状況です。
より多様な案件に応えられる体制をつくるため、今回、新たにAIエンジニアをお迎えしたいと考えています。
【仕事内容の概要】
本ポジションは、PoC で検証された AI モデルを「実際の業務やプロダクトで価値を出す形」に仕上げることに主軸を置いた AI エンジニアポジションです。
PoC フェーズでは、AI PM とともに
課題整理
モデル選定
プロトタイプ実装
精度検証
など、本開発を見据えた価値検証に実戦ベースで関わります。
本開発では Web エンジニアと連携し、AI モデルをアプリケーションや現場業務に統合するフェーズにも踏み込みます。
特に製造業領域では、点検記録・図面・手書き情報など多様なデータを扱うため、データ処理からモデル改善、推論基盤構築まで幅広いスキルが求められます。
小規模で動くプロジェクトが多く、自分のアウトプットがそのままプロダクトの価値に直結する環境です。
裁量が大きい分、実務を通して一気に経験の幅を広げることができます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
案件は少人数のクロスファンクショナルチームで進行し、平均的な規模の案件で
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発ではWebエンジニアと連携したAI機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI エンジニアは、AI PM・Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームで案件を推進します。
PoC 段階では AI PM と共に問題設定・検証を行い、京大・松尾研を中心とした学生インターンと並走しながらモデル開発を進めます。
本開発フェーズではWebエンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだAI機能をプロダクトとして統合する経験を積むことができます。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
事業成長による増員募集です。
製造業をはじめ日本を代表するエンタープライズ企業のお客様からのご依頼が増え、PoC だけでなく本開発・運用まで見据えた長期的な協業が多くなっており、有償契約は創業2年で累計100件にのぼります。
また、特許・図面・技能伝承など、製造業特化の新しいプロダクト領域も次々に立ち上がりつつあります。
こうした事業の広がりに伴い、AIモデル開発を担うエンジニアの活躍機会が大きく増えている状況です。
より多様な案件に応えられる体制をつくるため、今回、新たにAIエンジニアをお迎えしたいと考えています。
【仕事内容の概要】
本ポジションは、PoC で検証された AI モデルを「実際の業務やプロダクトで価値を出す形」に仕上げることに主軸を置いた AI エンジニアポジションです。
PoC フェーズでは、AI PM とともに
課題整理
モデル選定
プロトタイプ実装
精度検証
など、本開発を見据えた価値検証に実戦ベースで関わります。
本開発では Web エンジニアと連携し、AI モデルをアプリケーションや現場業務に統合するフェーズにも踏み込みます。
特に製造業領域では、点検記録・図面・手書き情報など多様なデータを扱うため、データ処理からモデル改善、推論基盤構築まで幅広いスキルが求められます。
小規模で動くプロジェクトが多く、自分のアウトプットがそのままプロダクトの価値に直結する環境です。
裁量が大きい分、実務を通して一気に経験の幅を広げることができます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
案件は少人数のクロスファンクショナルチームで進行し、平均的な規模の案件で
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発ではWebエンジニアと連携したAI機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI エンジニアは、AI PM・Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームで案件を推進します。
PoC 段階では AI PM と共に問題設定・検証を行い、京大・松尾研を中心とした学生インターンと並走しながらモデル開発を進めます。
本開発フェーズではWebエンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだAI機能をプロダクトとして統合する経験を積むことができます。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 600 〜 800 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: ◼︎勤務時間
フレックスタイム制(コアタイム:なし)
- フレキシブルタイム:5:00~22:00
※スーパーフレックスタイム制
- 標準労働時間:1日8時間
※月間所定労働時間:160時間前後
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~20時間) 休憩時間: 60分 |
||
| 設立年数 | 4年 | 従業員数 | 151人 |
株式会社エムニ
【フルリモ/スーパーフレックス/東京・京都/AIプロジェクトマネージャー/AI/機械学習モデルの開発経験&AI プロジェクトにおけるPM経験】東大・京大発、学術知見で製造業にAI革新を牽引する企業! のリモートワーク求人
【募集背景】
事業成長に伴う増員募集です。
創業から約2年で、有償契約は累計100件を超え、PoC に留まらず本開発・運用までを前提とした長期協業案件が増えています。
また、特許・図面・技能伝承など製造業特化の新規プロダクト領域も立ち上がり、複数の難易度の高いテーマが並行して進行しています。
こうした状況の中で、モデル開発だけでなく、課題定義・技術選定・全体設計を俯瞰してリードできる AI PM の重要性が高まっています。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、LLM・RAG・画像/音声モデルなどを活用した AI システムの企画・設計・実装を主導します。
・PoC フェーズ
クライアントや社内メンバーと連携しながら
課題整理・論点設計
技術選定(モデル/アーキテクチャ)
PoC 方針の策定およびプロトタイプ実装
精度検証・改善判断
など、価値検証における中核的な意思決定を担います。
・本開発
Web エンジニアと連携し、AIモデルをどの形で業務やプロダクトに組み込み、どう運用するかまでを見据えて推進します。
点検記録・図面・手書き情報など、未整備で多様なデータを扱うため、データ設計・前処理・モデル改善・推論基盤設計を俯瞰した判断が求められます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
平均的な案件では、以下の体制でプロジェクトが進行します。
AI PM : 1名 ※本ポジション
デモ開発 : AI PM + エンジニア 2〜3名
PoC:AI PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Web エンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発では Web エンジニアと連携した AI 機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI プロジェクトマネージャーは、Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームをリードする形で案件を推進します。
デモ開発 ~ PoC 段階では、顧客や社内メンバーと連携しながら課題設定・仮説設計・検証方針を整理し、京大・松尾研を中心とした学生インターンや 社内の AI エンジニアと並走しつつ、モデル設計・評価の意思決定を担います。
本開発フェーズでは Web エンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだ AI 機能をプロダクトや業務フローに統合する工程全体を主導します。
データ理解からモデル設計・実装、アプリケーション連携まで、AI 開発全体を俯瞰しながら意思決定を行う立場として案件に関わる体制が特徴です。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
事業成長に伴う増員募集です。
創業から約2年で、有償契約は累計100件を超え、PoC に留まらず本開発・運用までを前提とした長期協業案件が増えています。
また、特許・図面・技能伝承など製造業特化の新規プロダクト領域も立ち上がり、複数の難易度の高いテーマが並行して進行しています。
こうした状況の中で、モデル開発だけでなく、課題定義・技術選定・全体設計を俯瞰してリードできる AI PM の重要性が高まっています。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、LLM・RAG・画像/音声モデルなどを活用した AI システムの企画・設計・実装を主導します。
・PoC フェーズ
クライアントや社内メンバーと連携しながら
課題整理・論点設計
技術選定(モデル/アーキテクチャ)
PoC 方針の策定およびプロトタイプ実装
精度検証・改善判断
など、価値検証における中核的な意思決定を担います。
・本開発
Web エンジニアと連携し、AIモデルをどの形で業務やプロダクトに組み込み、どう運用するかまでを見据えて推進します。
点検記録・図面・手書き情報など、未整備で多様なデータを扱うため、データ設計・前処理・モデル改善・推論基盤設計を俯瞰した判断が求められます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
平均的な案件では、以下の体制でプロジェクトが進行します。
AI PM : 1名 ※本ポジション
デモ開発 : AI PM + エンジニア 2〜3名
PoC:AI PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Web エンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発では Web エンジニアと連携した AI 機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI プロジェクトマネージャーは、Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームをリードする形で案件を推進します。
デモ開発 ~ PoC 段階では、顧客や社内メンバーと連携しながら課題設定・仮説設計・検証方針を整理し、京大・松尾研を中心とした学生インターンや 社内の AI エンジニアと並走しつつ、モデル設計・評価の意思決定を担います。
本開発フェーズでは Web エンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだ AI 機能をプロダクトや業務フローに統合する工程全体を主導します。
データ理解からモデル設計・実装、アプリケーション連携まで、AI 開発全体を俯瞰しながら意思決定を行う立場として案件に関わる体制が特徴です。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 700 〜 1,500 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: ◼︎勤務時間
フレックスタイム制(コアタイム:なし)
- フレキシブルタイム:5:00~22:00
※スーパーフレックスタイム制
- 標準労働時間:1日8時間
※月間所定労働時間:160時間前後
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~20時間) 休憩時間: 60分 |
||
| 設立年数 | 4年 | 従業員数 | 151人 |
株式会社エムニ
【フルリモ/スーパーフレックス/東京・京都/フルスタックエンジニア/PythonまたはTypeScriptを用いた開発経験3年以上】東大・京大発、学術知見で製造業にAI革新を牽引する企業! のリモートワーク求人
【募集背景】
事業成長に伴う増員募集です。
創業から約2年で有償契約は累計100件を超え、PoC に留まらず、本開発・運用までを前提とした長期協業案件が着実に増えています。
AI モデルの検証だけでなく「業務に組み込み、現場で使われ続ける Web システムとして成立させること」が、プロダクト価値の中核になってきました。
その中で、PoC で検証された AI を前提に、Web アプリケーションや業務システムとして実装・改善を積み重ねていく Web エンジニアの役割が、これまで以上に重要になっています。
そこで今回、AI エンジニアやリード Web エンジニアと連携しながら、AI を前提とした Web システムの設計・実装を担う WEB アプリケーションエンジニア(フルスタック)を新たに募集します。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、AIを組み込んだWebアプリケーション・業務システムの設計・開発・改善を担当します。
PoC フェーズでは、AI PM・AIエンジニアと連携しながら、
AIモデルの特性や制約を踏まえたアプリケーション構成の検討
Web API/画面設計の検討
プロトタイプの実装・検証
など、本開発を見据えた技術検証を行います。
本開発フェーズでは開発の中核として、LLM/RAG/画像・音声モデルを組み込んだAI機能を、Webアプリケーションや業務システムとして実装・統合します。
フロントエンド・バックエンド・インフラまでを横断し、AIが現場で使われ続けるシステムを成立させます。
小規模なプロジェクトが多く、設計や実装の判断が、そのままプロダクトの品質や使い勝手に直結する環境です。
裁量を持って手を動かしながら、フルスタックに経験の幅を広げることができます。
【仕事内容の詳細】
■ 開発体制と期待する役割の補足
平均的な案件では、以下のような体制で開発を行います。
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
Web エンジニアには、本開発フェーズにおける中核メンバーとして、AI機能を前提としたアプリケーション設計・実装を担っていただきます。
特に、PoCで検証されたAIを「実際に使われるシステム」として成立させるためのアーキテクチャ設計・実装方針の整理・改善が求められます。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
本ポジションの Web エンジニアは、AI PM や AI エンジニア、リード Web エンジニアと協働しながら、少人数のクロスファンクショナルチームの中核メンバーとして案件に関わります。
本開発フェーズでは、PoC で検証された AI を前提に、LLM/RAG/画像・音声モデルを組み込んだ AI 機能について、Web アプリケーションや業務システムへの実装・統合を担います。
フロントエンド・バックエンド・インフラを横断しながら、設計意図を理解した上で、実装面からプロダクトを成立させていく役割です。
Web 領域の技術方針はリード Web エンジニアが担い、その方針を踏まえつつ、AI 開発と Web 開発をつなぐ実装・設計の中心として、現場で使われ続けるシステムづくりに関わります。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
事業成長に伴う増員募集です。
創業から約2年で有償契約は累計100件を超え、PoC に留まらず、本開発・運用までを前提とした長期協業案件が着実に増えています。
AI モデルの検証だけでなく「業務に組み込み、現場で使われ続ける Web システムとして成立させること」が、プロダクト価値の中核になってきました。
その中で、PoC で検証された AI を前提に、Web アプリケーションや業務システムとして実装・改善を積み重ねていく Web エンジニアの役割が、これまで以上に重要になっています。
そこで今回、AI エンジニアやリード Web エンジニアと連携しながら、AI を前提とした Web システムの設計・実装を担う WEB アプリケーションエンジニア(フルスタック)を新たに募集します。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、AIを組み込んだWebアプリケーション・業務システムの設計・開発・改善を担当します。
PoC フェーズでは、AI PM・AIエンジニアと連携しながら、
AIモデルの特性や制約を踏まえたアプリケーション構成の検討
Web API/画面設計の検討
プロトタイプの実装・検証
など、本開発を見据えた技術検証を行います。
本開発フェーズでは開発の中核として、LLM/RAG/画像・音声モデルを組み込んだAI機能を、Webアプリケーションや業務システムとして実装・統合します。
フロントエンド・バックエンド・インフラまでを横断し、AIが現場で使われ続けるシステムを成立させます。
小規模なプロジェクトが多く、設計や実装の判断が、そのままプロダクトの品質や使い勝手に直結する環境です。
裁量を持って手を動かしながら、フルスタックに経験の幅を広げることができます。
【仕事内容の詳細】
■ 開発体制と期待する役割の補足
平均的な案件では、以下のような体制で開発を行います。
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
Web エンジニアには、本開発フェーズにおける中核メンバーとして、AI機能を前提としたアプリケーション設計・実装を担っていただきます。
特に、PoCで検証されたAIを「実際に使われるシステム」として成立させるためのアーキテクチャ設計・実装方針の整理・改善が求められます。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
本ポジションの Web エンジニアは、AI PM や AI エンジニア、リード Web エンジニアと協働しながら、少人数のクロスファンクショナルチームの中核メンバーとして案件に関わります。
本開発フェーズでは、PoC で検証された AI を前提に、LLM/RAG/画像・音声モデルを組み込んだ AI 機能について、Web アプリケーションや業務システムへの実装・統合を担います。
フロントエンド・バックエンド・インフラを横断しながら、設計意図を理解した上で、実装面からプロダクトを成立させていく役割です。
Web 領域の技術方針はリード Web エンジニアが担い、その方針を踏まえつつ、AI 開発と Web 開発をつなぐ実装・設計の中心として、現場で使われ続けるシステムづくりに関わります。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 600 〜 800 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: ◼︎勤務時間
フレックスタイム制(コアタイム:なし)
- フレキシブルタイム:5:00~22:00
※スーパーフレックスタイム制
- 標準労働時間:1日8時間
※月間所定労働時間:160時間前後
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~20時間) 休憩時間: 60分 |
||
| 設立年数 | 4年 | 従業員数 | 151人 |
株式会社インターファクトリー
【首都圏ハイブリッド/Webデザイナー(UI/UX)/UI/UXデザインの実務経験3年以上】自社サービスと顧客ECをデザインする! のリモートワーク求人
【募集背景】
当社は2020年8月に東証グロース市場へ上場後、主力サービスであるクラウドコマースプラットフォーム「EBISUMART」は導入実績800社を超え、順調に事業を拡大しています。「EBISUMART Enterprise」など新たなサービスも次々リリースし、成長を加速させています。
お客様の「幸せ」を追求する中で、サービスや案件数が急速に増加しています。そこで、増え続けるプロダクトとお客様への対応力を強化するため、当社のデザイン業務を担う新たな仲間を募集します。プロダクトデザインの質向上と、お客様対応のさらなる充実を目指し、組織体制を強化していきます。
【仕事内容】
当社のデザイン部は、主に2つの役割があります。
1.自社プロダクトのデザイン制作と改善
2.お客様のビジネスを加速させるデザイン制作
あなたのこれまでのご経験や得意分野、今後の志向性を考慮し、最適な業務をお任せします。
【具体的な仕事】
1. プロダクトデザイン
当社が提供するクラウドコマースプラットフォーム「EBISUMART」「EBISUMART Enterprise」や、データ利活用プラットフォーム「EBISU PIM」など、複数の自社サービスのプロダクトデザインを担当していただきます。
・自社サービスのUI/UXデザイン企画・制作(管理画面、サポートサイトなど)
└ユーザー体験を考慮した使いやすいインターフェースの設計・改善
└サービス全体のブランドイメージを統一するビジュアルデザインの構築
・社内向けデザイン制作(展示会ブース、ロゴ、サービスサイトデザインなど)
└各種デザイン制作
2. コミュニケーションデザイン(ディレクション業務、デザイン制作業務)
自社サービス「EBISUMART」のお客様が構築するECサイトのデザイン制作において、ディレクション業務をお任せします。お客様のビジネスゴール達成に向け、デザインの力で貢献します。
・デザイン制作の全体管理
└デザイン部分の進行管理、品質管理
・顧客折衝・要件定義
└お客様の課題や要望をヒアリングし、デザインに落とし込むための要件定義
・デザイン提案、フィードバック調整
・ワイヤーフレーム制作
└サイト構造やレイアウトの設計
・デザインコーディング
・社内外の調整
└開発エンジニアや他部門、外部パートナーとの連携
【仕事のやりがい】
・UI/UXというECサイトの”顔”を作る経験ができる
・お客様とコミュニケーションを取りながら一緒に作り上げていくことができる
・お客様のビジネス課題をデザインで解決し、お客様のビジネスに貢献できる
・ユーザーや社内からの声を聞きながら、自社サービスをよりよくしていくことができる
・サービス成長にダイレクトに貢献できる
【業務の変更の範囲】
無
当社は2020年8月に東証グロース市場へ上場後、主力サービスであるクラウドコマースプラットフォーム「EBISUMART」は導入実績800社を超え、順調に事業を拡大しています。「EBISUMART Enterprise」など新たなサービスも次々リリースし、成長を加速させています。
お客様の「幸せ」を追求する中で、サービスや案件数が急速に増加しています。そこで、増え続けるプロダクトとお客様への対応力を強化するため、当社のデザイン業務を担う新たな仲間を募集します。プロダクトデザインの質向上と、お客様対応のさらなる充実を目指し、組織体制を強化していきます。
【仕事内容】
当社のデザイン部は、主に2つの役割があります。
1.自社プロダクトのデザイン制作と改善
2.お客様のビジネスを加速させるデザイン制作
あなたのこれまでのご経験や得意分野、今後の志向性を考慮し、最適な業務をお任せします。
【具体的な仕事】
1. プロダクトデザイン
当社が提供するクラウドコマースプラットフォーム「EBISUMART」「EBISUMART Enterprise」や、データ利活用プラットフォーム「EBISU PIM」など、複数の自社サービスのプロダクトデザインを担当していただきます。
・自社サービスのUI/UXデザイン企画・制作(管理画面、サポートサイトなど)
└ユーザー体験を考慮した使いやすいインターフェースの設計・改善
└サービス全体のブランドイメージを統一するビジュアルデザインの構築
・社内向けデザイン制作(展示会ブース、ロゴ、サービスサイトデザインなど)
└各種デザイン制作
2. コミュニケーションデザイン(ディレクション業務、デザイン制作業務)
自社サービス「EBISUMART」のお客様が構築するECサイトのデザイン制作において、ディレクション業務をお任せします。お客様のビジネスゴール達成に向け、デザインの力で貢献します。
・デザイン制作の全体管理
└デザイン部分の進行管理、品質管理
・顧客折衝・要件定義
└お客様の課題や要望をヒアリングし、デザインに落とし込むための要件定義
・デザイン提案、フィードバック調整
・ワイヤーフレーム制作
└サイト構造やレイアウトの設計
・デザインコーディング
・社内外の調整
└開発エンジニアや他部門、外部パートナーとの連携
【仕事のやりがい】
・UI/UXというECサイトの”顔”を作る経験ができる
・お客様とコミュニケーションを取りながら一緒に作り上げていくことができる
・お客様のビジネス課題をデザインで解決し、お客様のビジネスに貢献できる
・ユーザーや社内からの声を聞きながら、自社サービスをよりよくしていくことができる
・サービス成長にダイレクトに貢献できる
【業務の変更の範囲】
無
| 想定年収 | 420 〜 720 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 勤務形態 |
作業時間: フルフレックス(コアタイム無)
・標準労働時間:9:00-18:00
・フレキシブルタイム:なし
・コアタイム:なし
働き方: フルフレックス制 時間外労働の有無: 有(月平均9時間) 休憩時間: 60分 |
||
| 設立年数 | 24年 | 従業員数 | 151人 |
株式会社MyVision
【フルリモート可/インフラエンジニア/AWSorGCPを用いたインフラ運用構築経験(目安3年)】業界トップクラスの給与水準(上限3,000万円)|急成長HRベンチャー×最新技術|社会課題を解決するインフラエンジニア募集 のリモートワーク求人
【業務内容】
急成長する転職支援プラットフォームや、社内業務を支える基幹システム(SFA/CRM/ERP…など、複数の機能を持つ)のインフラ設計・構築・運用をお任せします。
事業が非連続な成長を続ける中で、トラフィック増大に耐えうるスケーラビリティの確保や、開発チームが高速に機能リリースできるための基盤作り(Developer Experienceの向上)がミッションです。
【チームについて】
インフラ専任者はまだ少なく、技術選定の裁量が非常に大きいフェーズです。CTOやリードエンジニアと密に連携し、
ゼロベースでのアーキテクチャ設計や、レガシーにとらわれないモダンな技術導入が可能です。
【やりがい】
▼急成長事業の「土台」を作る経験
数年で数百億規模を目指す事業スピードに追従するため、技術的負債を残さない堅牢さと、変化に強い柔軟さを併せ持ったアーキテクチャ設計に挑戦できます。
▼社内開発の魅力は、目の前の100〜1000人の社員がユーザであり、課題が解決して喜ぶ彼らの姿を、リアルタイムで見られることにあります。
また、「開発したけど結局使われなかった/売れなかった」といった外販プロダクト開発にありがちな悲劇もなく、
コードを書けば書いた分だけ価値を届けられる(むしろやりたいことは山積みです)という、開発者にとっては嬉しい状況が実現されています。
CTOが社内開発のやりがいについて語っています。是非ご覧ください。
シリアルCTOが二度目の挑戦で事業会社の開発組織作りを選んだわけ:https://note.com/myvision/n/n7a07abe877fc
▼新しい機能や技術を積極的に採用しており、エンジニアとしての技術的なスキルアップが望めます。
また、比較的小さいチームであるため、メンバーの裁量権も高く、リーダーシップや意思決定能力も磨かれます。
SWE以外のエンジニアチームについては以下もご参照ください。
【CTOインタビュー】転職支援ビジネスでのML(検索・推薦)チームの魅力:https://note.com/myvision/n/n0a273b05e518
【CTOインタビュー】GAI(生成AI)チームがいかに転職支援ビジネスを変えるか:https://note.com/myvision/n/n74d352db92d6
【業務の変更の範囲】
会社の規定に準ずる
急成長する転職支援プラットフォームや、社内業務を支える基幹システム(SFA/CRM/ERP…など、複数の機能を持つ)のインフラ設計・構築・運用をお任せします。
事業が非連続な成長を続ける中で、トラフィック増大に耐えうるスケーラビリティの確保や、開発チームが高速に機能リリースできるための基盤作り(Developer Experienceの向上)がミッションです。
【チームについて】
インフラ専任者はまだ少なく、技術選定の裁量が非常に大きいフェーズです。CTOやリードエンジニアと密に連携し、
ゼロベースでのアーキテクチャ設計や、レガシーにとらわれないモダンな技術導入が可能です。
【やりがい】
▼急成長事業の「土台」を作る経験
数年で数百億規模を目指す事業スピードに追従するため、技術的負債を残さない堅牢さと、変化に強い柔軟さを併せ持ったアーキテクチャ設計に挑戦できます。
▼社内開発の魅力は、目の前の100〜1000人の社員がユーザであり、課題が解決して喜ぶ彼らの姿を、リアルタイムで見られることにあります。
また、「開発したけど結局使われなかった/売れなかった」といった外販プロダクト開発にありがちな悲劇もなく、
コードを書けば書いた分だけ価値を届けられる(むしろやりたいことは山積みです)という、開発者にとっては嬉しい状況が実現されています。
CTOが社内開発のやりがいについて語っています。是非ご覧ください。
シリアルCTOが二度目の挑戦で事業会社の開発組織作りを選んだわけ:https://note.com/myvision/n/n7a07abe877fc
▼新しい機能や技術を積極的に採用しており、エンジニアとしての技術的なスキルアップが望めます。
また、比較的小さいチームであるため、メンバーの裁量権も高く、リーダーシップや意思決定能力も磨かれます。
SWE以外のエンジニアチームについては以下もご参照ください。
【CTOインタビュー】転職支援ビジネスでのML(検索・推薦)チームの魅力:https://note.com/myvision/n/n0a273b05e518
【CTOインタビュー】GAI(生成AI)チームがいかに転職支援ビジネスを変えるか:https://note.com/myvision/n/n74d352db92d6
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 550 〜 3,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 【フレックス制】
コアタイム:なし
フレキシブルタイム:8:00〜22:00
標準労働時間:8時間
※ライフステージに応じた働き方相談可能(週4勤務、時短勤務 等)
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~30時間) 休憩時間: 60分 |
||
| 企業概要 |
"最高の仕事が
最高の人生をつくる" 私たちMyVisionは、テクノロジーと仕組みを徹底的に活用し、人と企業の出会いの質を最大化することを目指しています。 属人的なスキルや偶然だけに頼るのではなく、データと科学的なプロセスに基づいた転職支援を実現することで、再現性のある高い成果を提供。 エージェントとしての専門性と、エンジニアやマーケターといった多様な職種の知見を組み合わせ、個人と企業の可能性を引き出す伴走者として成長を支え、日本一の転職支援企業となることを本気で追求しています。 ■MIssion 転職は、求職者にとっての一大イベントです。 また、まさに今、日本の転職業界は大きな変化の真っ只中にあり、急成長を遂げているマーケットでもあります。 しかし、その重要性にもかかわらず、業界の歴史は古く、伝統的なやり方が根強く残っており、サービスのクオリティは必ずしも高いとは言えませんでした。 もちろん、既存のやり方だけが問題なのではありません。 求職者も企業も、世の中の求人情報を体系的に把握しているわけではないし、自身のニーズやモチベーションを完全に理解しているわけではない。 転職は「重要だけれど、簡単ではない」領域なのです。 だからこそ、AIやWeb技術で、転職はもっと良くできる。 MyVisionにとって技術は、経営のための手段ではなく、事業の根幹です。 開発部はその技術を担い、経営と業界の変革に自ら責任を持って取り組みます。 これが、MyVision開発部のミッションです。 |
||
| 設立年数 | 5年 | 従業員数 | 250人 |
株式会社MyVision
【フルリモート可/LLMエンジニア/LLMの最新の技術トレンドにキャッチアップしている方】業界トップクラスの給与水準(上限3,000万円)|急成長HRベンチャー×最新技術|社会課題を解決するLLMエンジニア募集 のリモートワーク求人
【業務内容】
主に下記業務に携わって頂きます。
①LLMを用いた、全く新しい転職体験(転職支援AI)の企画・実現
②LLMの既存プロダクトへの組み込み・運用改善・営業支援
【募集背景】
当社では、LLMを活用した、全く新しい転職支援のあり方を模索しています。
これまではCTO岡部や副業メンバーを中心にプロジェクトを進めていましたが、昨今のLLMの重要性が増す中で、
転職支援領域における応用のポテンシャルを確信し、専任チームを結成するに至りました。
LLMに興味があり、次のステージでスキルを伸ばしたいと考えている方と一緒に仕事ができればと考えています。
【やりがい】
▼ゼロからスタンダードを作り上げるという挑戦
マイビジョンが目指す転職体験は、文字通りまだ地球上のどこにも存在していません。
参照先もない、タフなプロジェクトになりますが、マイビジョンが作り上げたものが、5年後の転職支援におけるスタンダードになる可能性はそれなりに高いと考えています。
▼総合的なスキルを磨くことができる
LLMを用いて、単なる既存業務の効率化でなく、新しい体験を作り上げるためには、複合的なスキルが必要になります。
・プロダクトマネジメントのスキル
・データサイエンスの知見
・開発に関する知見
特定領域の専門家、というより、まんべんなくどの領域も知識を持つことが求められる、起業家に近いポジションだと思います。
▼参考資料をご参照ください
CTOがLLMチーム立ち上げ背景や魅力を語っています。是非ご覧ください。
【CTOインタビュー】LLMチームがいかに転職支援ビジネスを変えるか:https://note.com/myvision/n/n74d352db92d6
社内開発のやりがいやLLM以外のエンジニアチームについては以下もご参照ください。
シリアルCTOが二度目の挑戦で事業会社の開発組織作りを選んだわけ:https://note.com/myvision/n/n7a07abe877fc
【CTOインタビュー】転職支援ビジネスでのML(検索・推薦)チームの魅力:https://note.com/myvision/n/n0a273b05e518
【業務の変更の範囲】
会社の規定に準ずる
主に下記業務に携わって頂きます。
①LLMを用いた、全く新しい転職体験(転職支援AI)の企画・実現
②LLMの既存プロダクトへの組み込み・運用改善・営業支援
【募集背景】
当社では、LLMを活用した、全く新しい転職支援のあり方を模索しています。
これまではCTO岡部や副業メンバーを中心にプロジェクトを進めていましたが、昨今のLLMの重要性が増す中で、
転職支援領域における応用のポテンシャルを確信し、専任チームを結成するに至りました。
LLMに興味があり、次のステージでスキルを伸ばしたいと考えている方と一緒に仕事ができればと考えています。
【やりがい】
▼ゼロからスタンダードを作り上げるという挑戦
マイビジョンが目指す転職体験は、文字通りまだ地球上のどこにも存在していません。
参照先もない、タフなプロジェクトになりますが、マイビジョンが作り上げたものが、5年後の転職支援におけるスタンダードになる可能性はそれなりに高いと考えています。
▼総合的なスキルを磨くことができる
LLMを用いて、単なる既存業務の効率化でなく、新しい体験を作り上げるためには、複合的なスキルが必要になります。
・プロダクトマネジメントのスキル
・データサイエンスの知見
・開発に関する知見
特定領域の専門家、というより、まんべんなくどの領域も知識を持つことが求められる、起業家に近いポジションだと思います。
▼参考資料をご参照ください
CTOがLLMチーム立ち上げ背景や魅力を語っています。是非ご覧ください。
【CTOインタビュー】LLMチームがいかに転職支援ビジネスを変えるか:https://note.com/myvision/n/n74d352db92d6
社内開発のやりがいやLLM以外のエンジニアチームについては以下もご参照ください。
シリアルCTOが二度目の挑戦で事業会社の開発組織作りを選んだわけ:https://note.com/myvision/n/n7a07abe877fc
【CTOインタビュー】転職支援ビジネスでのML(検索・推薦)チームの魅力:https://note.com/myvision/n/n0a273b05e518
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 550 〜 3,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 勤務形態 |
作業時間: 【フレックス制】
コアタイム:なし
フレキシブルタイム:8:00〜22:00
標準労働時間:8時間
※ライフステージに応じた働き方相談可能(週4勤務、時短勤務 等)
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~30時間) 休憩時間: 60分 |
||
| 企業概要 |
"最高の仕事が
最高の人生をつくる" 私たちMyVisionは、テクノロジーと仕組みを徹底的に活用し、人と企業の出会いの質を最大化することを目指しています。 属人的なスキルや偶然だけに頼るのではなく、データと科学的なプロセスに基づいた転職支援を実現することで、再現性のある高い成果を提供。 エージェントとしての専門性と、エンジニアやマーケターといった多様な職種の知見を組み合わせ、個人と企業の可能性を引き出す伴走者として成長を支え、日本一の転職支援企業となることを本気で追求しています。 ■MIssion 転職は、求職者にとっての一大イベントです。 また、まさに今、日本の転職業界は大きな変化の真っ只中にあり、急成長を遂げているマーケットでもあります。 しかし、その重要性にもかかわらず、業界の歴史は古く、伝統的なやり方が根強く残っており、サービスのクオリティは必ずしも高いとは言えませんでした。 もちろん、既存のやり方だけが問題なのではありません。 求職者も企業も、世の中の求人情報を体系的に把握しているわけではないし、自身のニーズやモチベーションを完全に理解しているわけではない。 転職は「重要だけれど、簡単ではない」領域なのです。 だからこそ、AIやWeb技術で、転職はもっと良くできる。 MyVisionにとって技術は、経営のための手段ではなく、事業の根幹です。 開発部はその技術を担い、経営と業界の変革に自ら責任を持って取り組みます。 これが、MyVision開発部のミッションです。 |
||
| 設立年数 | 5年 | 従業員数 | 250人 |
345件中 11件~20件
リモートワーク求人を探す
職種からリモートワーク求人を探す
- CTO
- VPoE
- テックリード
- ITコンサルタント
- ITアーキテクト
- プロジェクトマネージャー
- プロダクトマネージャー
- スクラムマスター
- PMO
- ブリッジSE
- プロジェクトリーダー
- webデザイナー
- UIUXデザイナー
- webディレクター
- デジタルマーケター
- ゲームデザイナー
- CGデザイナー
- インフラエンジニア
- SRE
- ネットワークエンジニア
- サーバーエンジニア
- セキュリティエンジニア
- システムエンジニア
- システムディレクター
- サーバーサイドエンジニア
- フロントエンドエンジニア
- マークアップコーダー
- iOSエンジニア
- Androidエンジニア
- ゲームエンジニア
- ゲームプランナー
- QAエンジニア
- テストエンジニア
- テスター
- AIエンジニア(DL/機械学習)
- データサイエンティスト
- データアナリスト
- BIエンジニア
- データベースエンジニア
- 社内SE
- ヘルプデスク
- テクニカルサポート
- CRE
開発経験からリモートワーク求人を探す
- Access
- ActionScript
- AD
- Android(Java)
- Angular
- Ansible
- AWS
- Azure
- C#
- C++
- CakePHP
- COBOL
- Cordova
- C言語
- Django
- EC-CUBE
- Electron
- Elixir
- Express.js
- Figma
- Firebase
- Flask
- Flutter
- FuelPHP
- GCP
- Go
- HTML/CSS
- Illustrator
- Java
- JavaScript
- Kotlin
- Kubernetes
- Laravel
- Linux
- MySQL
- Next.js
- Node.js
- Nuxt.js
- Objective-C
- Oracle
- Perl
- Photoshop
- PHP
- PL/SQL
- PostgreSQL
- Python
- R
- React
- React Native
- RPA(Biz Robo)
- RPA(UiPath)
- RPA(WinActor)
- Ruby on Rails
- Rust
- Salesforce
- SAP
- Scala
- Seasar2
- Sketch
- Spring
- Spring Boot
- SQL
- SQL Server
- Struts
- Swift
- Symfony
- Tableau
- Tensorflow
- Terraform
- Tresure Data
- TypeScript
- Unity
- VB
- VBA
- Vue.js
- WordPress
- Xamarin
- XD
働き方からリモートワーク求人を探す
リモートワークタイプからリモートワーク求人を探す
語学・国籍からリモートワーク求人を探す
Jobのタイトルが入ります
こちらの求人に応募します
Jobのタイトルが入ります
こちらの求人に応募します
への応募が完了しました。
ご応募ありがとうございます。
担当エージェントからの連絡をお待ちください。
Jobのタイトルが入ります
こちらの求人を辞退しますが間違いないですか?
への辞退が完了しました。
またのご応募お待ちしています。
既に応募済みの案件です。
求人への応募には
リラシクの利用を開始してください。
求人への応募にはご住所の入力が必要です。
予期せぬエラーが発生しました。