AIエンジニア(DL/機械学習)×地方フルリモートOKのリモートワーク転職・求人情報一覧
69件中 1件~10件
株式会社RIT
【フルリモート◎】AIコンサル×エンジニア募集!◆平均成長率135%!/裁量の大きさ◎/基本リモートワーク のリモートワーク求人
■お仕事内容
<ミッション>
本ポジションは、生成AIおよびモダンなFull-Stack TypeScript技術を前提に、開発生産性の向上をリードするエンジニアリングロールです。
生成AIを単なる実装補助ツールとして扱うのではなく、
・要件整理・設計・実装・レビューまでを含めた開発プロセス
・チームで再現可能なAI活用の型
・品質とスピードを両立する開発体験
をプロセスとして設計・実践し、社内外に展開することを目的としています。
社内では、AIを前提とした開発のやり方を標準化・定着させ、
社外では、有償の研修・ワークショップという形でそのプロセスを提供することで、
クライアントの開発生産性向上を支援します。
研修は単体でも価値を持つ技術サービスであり、
必要に応じて受託開発や伴走支援につながることもありますが、
営業活動や売上目標を直接担うポジションではありません。
<具体的な業務イメージ>
▼開発プロセス改善・定着支援(社内)
・生成AI活用を前提とした開発フローの設計・改善
・Full-Stack TypeScript開発における設計・実装プロセスの整理
・AI生成コードを含めたレビュー観点・品質基準の定義
・チーム横断での開発プロセス定着支援
▼クライアント向け有償研修・ワークショップの提供
・クライアント向けのAI活用開発研修・ワークショップの設計・実施
・実務に直結する題材を用いたハンズオンやディスカッションのファシリテーション
・クライアントの開発状況・課題を踏まえたプロセス提案
・研修後を見据えた技術的示唆・改善ポイントの整理
※ 研修は「教えること」自体を目的とせず、実務で使える開発プロセスを体感してもらう場として位置づけています。
▼プロジェクト伴走・技術支援(必要に応じて)
・研修と並行、または研修後のプロジェクトへの技術的関与
・設計レビュー、実装支援、技術的な壁打ち
・社内外で再利用可能なプロセスへのフィードバック
■このポジションの魅力
・生成AI × TypeScript を前提とした開発の型を、自社仕様として設計できる
・研修を「教育」ではなく、価値ある技術サービスとして提供できる
・社内改善と対外サービスの両方に関われる
・ミドル後半〜シニアとして、技術・プロセス両面で影響力を発揮できる
■参考URL
以下資料もご覧ください
・プレスリリース
https://prtimes.jp/main/html/searchrlp/company_id/36710
【業務の変更の範囲】
会社の規定に準ずる
<ミッション>
本ポジションは、生成AIおよびモダンなFull-Stack TypeScript技術を前提に、開発生産性の向上をリードするエンジニアリングロールです。
生成AIを単なる実装補助ツールとして扱うのではなく、
・要件整理・設計・実装・レビューまでを含めた開発プロセス
・チームで再現可能なAI活用の型
・品質とスピードを両立する開発体験
をプロセスとして設計・実践し、社内外に展開することを目的としています。
社内では、AIを前提とした開発のやり方を標準化・定着させ、
社外では、有償の研修・ワークショップという形でそのプロセスを提供することで、
クライアントの開発生産性向上を支援します。
研修は単体でも価値を持つ技術サービスであり、
必要に応じて受託開発や伴走支援につながることもありますが、
営業活動や売上目標を直接担うポジションではありません。
<具体的な業務イメージ>
▼開発プロセス改善・定着支援(社内)
・生成AI活用を前提とした開発フローの設計・改善
・Full-Stack TypeScript開発における設計・実装プロセスの整理
・AI生成コードを含めたレビュー観点・品質基準の定義
・チーム横断での開発プロセス定着支援
▼クライアント向け有償研修・ワークショップの提供
・クライアント向けのAI活用開発研修・ワークショップの設計・実施
・実務に直結する題材を用いたハンズオンやディスカッションのファシリテーション
・クライアントの開発状況・課題を踏まえたプロセス提案
・研修後を見据えた技術的示唆・改善ポイントの整理
※ 研修は「教えること」自体を目的とせず、実務で使える開発プロセスを体感してもらう場として位置づけています。
▼プロジェクト伴走・技術支援(必要に応じて)
・研修と並行、または研修後のプロジェクトへの技術的関与
・設計レビュー、実装支援、技術的な壁打ち
・社内外で再利用可能なプロセスへのフィードバック
■このポジションの魅力
・生成AI × TypeScript を前提とした開発の型を、自社仕様として設計できる
・研修を「教育」ではなく、価値ある技術サービスとして提供できる
・社内改善と対外サービスの両方に関われる
・ミドル後半〜シニアとして、技術・プロセス両面で影響力を発揮できる
■参考URL
以下資料もご覧ください
・プレスリリース
https://prtimes.jp/main/html/searchrlp/company_id/36710
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 800 〜 1,200 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 勤務形態 | |||
| 設立年数 | 14年 | 従業員数 | 19人 |
株式会社モンスターラボ
【フルリモート★上流~一気通貫】AI開発エンジニアへのチャレンジ!最先端のAI×DXコンサルで社会貢献! のリモートワーク求人
■お仕事内容
AI、MaaS、FinTech、IoT、VRなど多岐にわたる最新テクノロジーを活用した革新的なサービスや
製品の新規企画から開発までのプロセスをリードし、AI駆動開発の価値を最大化するとともに、
従来型のエンジニアの10倍の生産性を発揮できるすごい(卓越した、超効率的な、最先端な、革命的な、異次元な)
AI人材として活躍していただきます。
<業務イメージ>
・AIアシストやAIエージェントを活用した要件定義/設計/実装/テストを含む幅広い業務の効率化
・CursorやWindsurfといったIDE、Bolt.newやDevinといったエージェントなどのAI駆動開発サービスの評価と活用推進
・社内のプロジェクトマネージャー、ディレクター、デザイナーと連携し、技術面からビジネス成功を推進
・テックリードとして、プロジェクトの技術的方向性を決定し、開発チームを指導
・フルスタックエンジニアとして、国内またベトナム拠点を中心とした開発チームを統括し、
プロジェクトを成功に導く
・自身の専門分野を超えて、プロジェクトの成功に向けたリーダーシップを発揮
・設計・開発だけでなく、CI/CDパイプラインの構築やデプロイ戦略の策定・実行までを担い、
サービスの安定運用と継続的な改善を推進。
【開発実績】https://monstar-lab.com/work
■募集背景
事業拡大に向けた増員
■魅力ポイント
・LLMを活用した新しい開発手法を構築し、業界をリードする経験を積める
・AI駆動開発のノウハウを社内に広め、組織の成長に貢献する役割を担える
・AIエージェント開発の実務経験を通じて、最先端の技術革新に直接関与できる
■キャリアパス
・幅広いキャリアパス
・エンジニアリングマネージャやスペシャリストなどのキャリアパスも希望により拓けます
・エンジニアリングはもちろん、組織づくりにも関われます
■評価の仕組み
【等級評価】
モンスターラボでは半期に一度、貢献を通じて確認された成果や能力やスキルの棚卸を実施し
給与改定を実施しています。等級は各等級に期待される以下に関する項目によって決定しています。
①スキル
②スタンス
③プロジェクトパフォーマンス
④①~③の事業戦略への貢献
■配属先
Practice & Innovation_JP Techチーム
■入社後キャリアサポート
・メンター制度
入社後、先輩社員が1on1でサポートします。
1on1を実施しながら日頃の業務やキャリア形成の相談が可能です
・オンボーディングサポート
・キャリアカウンセリング
■記事
Monstarlab Blog:
https://monstar-lab.com/dx/
モンスターラボ、生成AIを活用した レガシーシステムを刷新する新サービスを提供開始:
https://monstar-lab.com/news/news_20231207
モンスターラボ、シンガポールマーケットにおいて AI駆動型PoC/MVP開発ソリューション『Monstar X』をリリース:
https://monstar-lab.com/news/news_20250227
【業務の変更の範囲】
会社の規定に準ずる
AI、MaaS、FinTech、IoT、VRなど多岐にわたる最新テクノロジーを活用した革新的なサービスや
製品の新規企画から開発までのプロセスをリードし、AI駆動開発の価値を最大化するとともに、
従来型のエンジニアの10倍の生産性を発揮できるすごい(卓越した、超効率的な、最先端な、革命的な、異次元な)
AI人材として活躍していただきます。
<業務イメージ>
・AIアシストやAIエージェントを活用した要件定義/設計/実装/テストを含む幅広い業務の効率化
・CursorやWindsurfといったIDE、Bolt.newやDevinといったエージェントなどのAI駆動開発サービスの評価と活用推進
・社内のプロジェクトマネージャー、ディレクター、デザイナーと連携し、技術面からビジネス成功を推進
・テックリードとして、プロジェクトの技術的方向性を決定し、開発チームを指導
・フルスタックエンジニアとして、国内またベトナム拠点を中心とした開発チームを統括し、
プロジェクトを成功に導く
・自身の専門分野を超えて、プロジェクトの成功に向けたリーダーシップを発揮
・設計・開発だけでなく、CI/CDパイプラインの構築やデプロイ戦略の策定・実行までを担い、
サービスの安定運用と継続的な改善を推進。
【開発実績】https://monstar-lab.com/work
■募集背景
事業拡大に向けた増員
■魅力ポイント
・LLMを活用した新しい開発手法を構築し、業界をリードする経験を積める
・AI駆動開発のノウハウを社内に広め、組織の成長に貢献する役割を担える
・AIエージェント開発の実務経験を通じて、最先端の技術革新に直接関与できる
■キャリアパス
・幅広いキャリアパス
・エンジニアリングマネージャやスペシャリストなどのキャリアパスも希望により拓けます
・エンジニアリングはもちろん、組織づくりにも関われます
■評価の仕組み
【等級評価】
モンスターラボでは半期に一度、貢献を通じて確認された成果や能力やスキルの棚卸を実施し
給与改定を実施しています。等級は各等級に期待される以下に関する項目によって決定しています。
①スキル
②スタンス
③プロジェクトパフォーマンス
④①~③の事業戦略への貢献
■配属先
Practice & Innovation_JP Techチーム
■入社後キャリアサポート
・メンター制度
入社後、先輩社員が1on1でサポートします。
1on1を実施しながら日頃の業務やキャリア形成の相談が可能です
・オンボーディングサポート
・キャリアカウンセリング
■記事
Monstarlab Blog:
https://monstar-lab.com/dx/
モンスターラボ、生成AIを活用した レガシーシステムを刷新する新サービスを提供開始:
https://monstar-lab.com/news/news_20231207
モンスターラボ、シンガポールマーケットにおいて AI駆動型PoC/MVP開発ソリューション『Monstar X』をリリース:
https://monstar-lab.com/news/news_20250227
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 500 〜 700 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: Grade2まで:フレックスタイム制
「標準労働時間」8時間相当/日(休憩1時間を除く)
(始業)8:00〜11:00
(終業)16:00〜21:00
「コアタイム」 11:00〜16:00
休憩60分(原則12:00〜15:00の間で取得)
「フレキシブルタイム」08:00~21:00
働き方: フレックス制(コアタイムあり) 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 企業概要 |
「多様性を活かし、テクノロジーで世界を変える」をミッションに、カルチャー、国籍、バックグラウンドに関係なく志の高い人材がチーム一丸となって、イノベーティブなサービスや事業を生み出していくグローバルテックカンパニーとなることを目指している企業です。
|
||
| 設立年数 | 6年 | 従業員数 | 1,200人 |
株式会社モンスターラボ
【フルリモート★上流~一気通貫】AI開発エンジニア!最先端のAI×DXコンサルで社会貢献! のリモートワーク求人
■お仕事内容
AI、MaaS、FinTech、IoT、VRなど多岐にわたる最新テクノロジーを活用した革新的なサービスや
製品の新規企画から開発までのプロセスをリードし、AI駆動開発の価値を最大化するとともに、
従来型のエンジニアの10倍の生産性を発揮できるすごい(卓越した、超効率的な、最先端な、革命的な、異次元な)
AI人材として活躍していただきます。
<業務イメージ>
・AIアシストやAIエージェントを活用した要件定義/設計/実装/テストを含む幅広い業務の効率化
・CursorやWindsurfといったIDE、Bolt.newやDevinといったエージェントなどのAI駆動開発サービスの評価と活用推進
・社内のプロジェクトマネージャー、ディレクター、デザイナーと連携し、技術面からビジネス成功を推進
・テックリードとして、プロジェクトの技術的方向性を決定し、開発チームを指導
・フルスタックエンジニアとして、国内またベトナム拠点を中心とした開発チームを統括し、
プロジェクトを成功に導く
・自身の専門分野を超えて、プロジェクトの成功に向けたリーダーシップを発揮
・設計・開発だけでなく、CI/CDパイプラインの構築やデプロイ戦略の策定・実行までを担い、
サービスの安定運用と継続的な改善を推進。
【開発実績】https://monstar-lab.com/work
■募集背景
事業拡大に向けた増員
■魅力ポイント
・LLMを活用した新しい開発手法を構築し、業界をリードする経験を積める
・AI駆動開発のノウハウを社内に広め、組織の成長に貢献する役割を担える
・AIエージェント開発の実務経験を通じて、最先端の技術革新に直接関与できる
■キャリアパス
・幅広いキャリアパス
・エンジニアリングマネージャやスペシャリストなどのキャリアパスも希望により拓けます
・エンジニアリングはもちろん、組織づくりにも関われます
■評価の仕組み
【等級評価】
モンスターラボでは半期に一度、貢献を通じて確認された成果や能力やスキルの棚卸を実施し
給与改定を実施しています。等級は各等級に期待される以下に関する項目によって決定しています。
①スキル
②スタンス
③プロジェクトパフォーマンス
④①~③の事業戦略への貢献
■配属先
Practice & Innovation_JP Techチーム
■入社後キャリアサポート
・メンター制度
入社後、先輩社員が1on1でサポートします。
1on1を実施しながら日頃の業務やキャリア形成の相談が可能です
・オンボーディングサポート
・キャリアカウンセリング
■記事
Monstarlab Blog:
https://monstar-lab.com/dx/
モンスターラボ、生成AIを活用した レガシーシステムを刷新する新サービスを提供開始:
https://monstar-lab.com/news/news_20231207
モンスターラボ、シンガポールマーケットにおいて AI駆動型PoC/MVP開発ソリューション『Monstar X』をリリース:
https://monstar-lab.com/news/news_20250227
【業務の変更の範囲】
会社の規定に準ずる
AI、MaaS、FinTech、IoT、VRなど多岐にわたる最新テクノロジーを活用した革新的なサービスや
製品の新規企画から開発までのプロセスをリードし、AI駆動開発の価値を最大化するとともに、
従来型のエンジニアの10倍の生産性を発揮できるすごい(卓越した、超効率的な、最先端な、革命的な、異次元な)
AI人材として活躍していただきます。
<業務イメージ>
・AIアシストやAIエージェントを活用した要件定義/設計/実装/テストを含む幅広い業務の効率化
・CursorやWindsurfといったIDE、Bolt.newやDevinといったエージェントなどのAI駆動開発サービスの評価と活用推進
・社内のプロジェクトマネージャー、ディレクター、デザイナーと連携し、技術面からビジネス成功を推進
・テックリードとして、プロジェクトの技術的方向性を決定し、開発チームを指導
・フルスタックエンジニアとして、国内またベトナム拠点を中心とした開発チームを統括し、
プロジェクトを成功に導く
・自身の専門分野を超えて、プロジェクトの成功に向けたリーダーシップを発揮
・設計・開発だけでなく、CI/CDパイプラインの構築やデプロイ戦略の策定・実行までを担い、
サービスの安定運用と継続的な改善を推進。
【開発実績】https://monstar-lab.com/work
■募集背景
事業拡大に向けた増員
■魅力ポイント
・LLMを活用した新しい開発手法を構築し、業界をリードする経験を積める
・AI駆動開発のノウハウを社内に広め、組織の成長に貢献する役割を担える
・AIエージェント開発の実務経験を通じて、最先端の技術革新に直接関与できる
■キャリアパス
・幅広いキャリアパス
・エンジニアリングマネージャやスペシャリストなどのキャリアパスも希望により拓けます
・エンジニアリングはもちろん、組織づくりにも関われます
■評価の仕組み
【等級評価】
モンスターラボでは半期に一度、貢献を通じて確認された成果や能力やスキルの棚卸を実施し
給与改定を実施しています。等級は各等級に期待される以下に関する項目によって決定しています。
①スキル
②スタンス
③プロジェクトパフォーマンス
④①~③の事業戦略への貢献
■配属先
Practice & Innovation_JP Techチーム
■入社後キャリアサポート
・メンター制度
入社後、先輩社員が1on1でサポートします。
1on1を実施しながら日頃の業務やキャリア形成の相談が可能です
・オンボーディングサポート
・キャリアカウンセリング
■記事
Monstarlab Blog:
https://monstar-lab.com/dx/
モンスターラボ、生成AIを活用した レガシーシステムを刷新する新サービスを提供開始:
https://monstar-lab.com/news/news_20231207
モンスターラボ、シンガポールマーケットにおいて AI駆動型PoC/MVP開発ソリューション『Monstar X』をリリース:
https://monstar-lab.com/news/news_20250227
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 600 〜 900 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: Gradeに応じて労働時間制度が異なる。
Grade3以上:裁量労働制
※9:30始業、18:30終業を基本とし、労働者の決定に委ねる。
働き方: 裁量労働制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 企業概要 |
「多様性を活かし、テクノロジーで世界を変える」をミッションに、カルチャー、国籍、バックグラウンドに関係なく志の高い人材がチーム一丸となって、イノベーティブなサービスや事業を生み出していくグローバルテックカンパニーとなることを目指している企業です。
|
||
| 設立年数 | 6年 | 従業員数 | 1,200人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】機械学習エンジニア/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで全てを
自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、提供元のエンジニアは
以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで全てを
自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、提供元のエンジニアは
以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 450 〜 700 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制
コアタイム:なし
フレキシブルタイム:なし
標準労働時間: 09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】リード機械学習エンジニア!/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
また、それに加え、他プロジェクトの機械学習エンジニアのスーパーバイズおよび組織運営にも携わっていただきます。
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発(機械学習エンジニアと同様)
・プロジェクト提案段階での技術観点からの評価やアドバイス
・機械学習エンジニアが担当するプロジェクトのスーパーバイズ
・エンジニアリング部の組織運営に関わる業務(採用、評価、育成等)
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアもフロントに立って
直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、提供元のエンジニアは
以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
また、それに加え、他プロジェクトの機械学習エンジニアのスーパーバイズおよび組織運営にも携わっていただきます。
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発(機械学習エンジニアと同様)
・プロジェクト提案段階での技術観点からの評価やアドバイス
・機械学習エンジニアが担当するプロジェクトのスーパーバイズ
・エンジニアリング部の組織運営に関わる業務(採用、評価、育成等)
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアもフロントに立って
直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、提供元のエンジニアは
以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 850 〜 1,200 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制
コアタイム:なし
フレキシブルタイム:なし
標準労働時間: 09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】機械学習エンジニア/リーダー候補!ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで
全てを自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
担当プロジェクトのメインエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、モデル開発/改善、結果のレポーティング等を実施していただきます。
(プロジェクトごとに、リード機械学習エンジニアが1名サポートにつきます)
<具体的な業務イメージ>
・ディープラーニング等の機械学習技術を用いたソリューションの開発
・顧客プロジェクト向けの機械学習ソリューションのカスタマイズ開発
・機械学習技術を用いたシステムの開発
・社内プロジェクトメンバーや顧客への技術的な説明
■ポジションの魅力
・常に新しい機械学習技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題を機械学習で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つ機械学習開発、機械学習モデリングに携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。プロジェクトの始まりから終わりまで
全てを自らの手で牽引したいと思われている方にとっては非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、希望に応じてエンジニアも
フロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 600 〜 900 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】LLMエンジニア!/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
LLM専属のエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、LLMモデルの検証/開発/改善、結果のレポーティング、
LLMを用いたシステムの開発等に関わっていただきます。
(プロジェクトごとに、リードエンジニアが1名サポートにつきます。)
またLLMに関連する最新技術のキャッチアップ、社内への展開、及びマルチエージェントシステムのための
フレームワーク開発などをお任せする予定です。
<具体的な業務イメージ>
・LLMを用いたクライアントプロジェクトへの参画、及びソリューションの開発
・LLMに関連する最新技術のキャッチアップ、社内への展開
・マルチエージェントシステムのためのフレームワーク開発
・社内プロジェクトメンバーや顧客への技術的な説明
・LLMを用いたシステム開発PJにおけるLLMの精度検証・チューニング
■ポジションの魅力
・常に新しいLLM技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題をLLM技術で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つLLM技術応用やLLMシステム開発に携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。
プロジェクトの始まりから終わりまで全てを自らの手で牽引したいと思われている方にとっては
非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、
希望に応じてエンジニアもフロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で
自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
LLM専属のエンジニアとして、弊社のソリューションデザイナ(顧客折衝やプロジェクトマネジメント等を担当)
と連携しながら、データ分析、LLMモデルの検証/開発/改善、結果のレポーティング、
LLMを用いたシステムの開発等に関わっていただきます。
(プロジェクトごとに、リードエンジニアが1名サポートにつきます。)
またLLMに関連する最新技術のキャッチアップ、社内への展開、及びマルチエージェントシステムのための
フレームワーク開発などをお任せする予定です。
<具体的な業務イメージ>
・LLMを用いたクライアントプロジェクトへの参画、及びソリューションの開発
・LLMに関連する最新技術のキャッチアップ、社内への展開
・マルチエージェントシステムのためのフレームワーク開発
・社内プロジェクトメンバーや顧客への技術的な説明
・LLMを用いたシステム開発PJにおけるLLMの精度検証・チューニング
■ポジションの魅力
・常に新しいLLM技術への挑戦ができる
・様々な産業における事業/ビジネス上の課題をLLM技術で解決できる
・ビジネスに携わりながら、アカデミアレベルの技術キャッチアップもし続けられる
・名前だけでない、真にビジネスに役立つLLM技術応用やLLMシステム開発に携われる
・AIでイノベーションを起こすことに携われる
■このような想いを実現されたい方にご応募いただきたいです。
1. 機械学習を用いた社会実装、産業実装を自分の手で担いたい方
弊社が担当する案件は社会や産業そのものに影響を与えるものが中心です。
技術はあくまでツールとして捉え、ソリューションを提供することを主眼に置いていることを重要視する集団です。
2. 自身が担当している案件がPoCのみで終わることや実際に世に出て行かないことに不安を感じる方
弊社の案件継続率は70%と他社と比較して比較的高いと自負しています。
3. 自分が主人公としてプロジェクトを牽引したいと考えている方
弊社が請負う案件はエンジニア側のメイン担当者は基本1名です。
プロジェクトの始まりから終わりまで全てを自らの手で牽引したいと思われている方にとっては
非常に魅力的な環境ではないかと考えています。
メイン担当者を補佐する立場であるSV(スーパーバイザー)がプロジェクトに1名配置されますので、
案件の進め方や技術選定等に対して1名で担当いただくことはありません。
■当社の特徴
弊社はオーダーメイドによるAIモデル「カスタムAI」の開発・提供を行う、AI/機械学習のスペシャリスト集団で、
最先端のAI技術とクライアントのビジネスを「つなぐ存在」をミッションとしたスタートアップ企業です。
高い技術力と課題解決能力が評価され、既に大手企業を中心に多くの導入事例とリピート契約があります。
▼カスタムAIソリューション事業とは?
弊社は以下を特徴とするカスタムAIソリューション事業を展開しています。
・オーダーメイドによるAI開発
- アカデミア出自の先端の機械学習技術をベースに、ビジネスにジャストフィットする形でAIを受託開発
・企業のコア業務をAIで変革
- 画一的なパッケージAでは対応が難しい、ビジネス現場特有の複雑な課題の解決に貢献
また他社との差別化のため、弊社は「バリューアップ型AIテーマ」に注力しています。
▼プロジェクトの開発フロー
弊社では約3ヶ月間という短いサイクルで機械学習モデルやAIに関係するシステムをお客様に提供しています。
顧客折衝は基本的に弊社のソリューションデザイナが行いますが、
希望に応じてエンジニアもフロントに立って直接提案したり顧客ニーズを聞いたりすることができます。
▼チーム構成・支援制度
基本的に弊社では1つのPJTに対し、メイン担当としてソリューションデザイナ/エンジニアが1名ずつアサインされます。
またソリューションデザイナ/エンジニアそれぞれを補佐する役割としてSV(スーパーバイザー)がつきます。
一方で大型案件等になりますとPJTの人数は必要に応じて増加します。
▼裁量の大きさについて
弊社はAIコンサルティングの会社としてお客様に”AIソリューションを提供すること”を使命としています。
AIソリューションを提供するためにあらゆることを思案して実行できればと考えているので、
提供元のエンジニアは以下のような裁量の大きい環境で
自らのプロフェッショナリズムを発揮いただければと考えています。
・技術者がお客様に対して直接提案をすること
・お客様が設計した問題に対してその問題設計に提言できること
・チームを自ら組閣し案件成功に向けて自ら動くことができること
・会社の承認のもと、必要人員の確保依頼やツールの追加導入について主導、積極的な提案ができること
▼キャリアパスについて
右記のような流れでキャリアを歩んでいただく想定です。(スタッフ→リーダー→マネージャー→部長)
以下、リーダーについては役割の詳細を記載させていただきます。
<リーダーの役割>
・スタッフが牽引するAIソリューションを提供する案件のSV(スーパーバイザー)
- SVとして案件成功をマネジメントいただきながら、スタッフに対して必要な技術の伝授、
環境の提供などを担当いただきます。
・スタッフの育成、キャリアパス構築の補助
- メンターとしてスタッフの成長を支援いただきます。
- 必要に応じてスタッフと相談してスタッフが歩みたいキャリアに合わせた案件の提案や
技術習得方法の指南などをお任せします。
・組織貢献活動の牽引
- 採用や育成、インフラ整備やセキュリティ周りなど、会社の成長に必要な業務のうち一部を牽引いただきます。
一方で弊社のエンジニア組織は50名未満とまだまだ成長の余地しかなく、
キャリアパスは完全に決まりきっているの部分は少ないです。
今後もキャリアパスは社員の想いや組織の成長段階によって変化し続けると認識しています。
そのため「キャリアは自ら切り開きたい」と思える方にご参画いただきたいですし、
弊社としてはその様な想いを支えられる組織として存在できればと考えております。
■社内活動
エンジニアリング部では以下のような社内活動を通じて技術的成長やエンゲージメント向上を行っています。
・技術勉強会の開催(数理最適化、強化学習 etc...)
・最新技術勉強会の開催(マルチエージェント etc...)
- 本勉強会にはソリューションデザイナー、コーポレートも合わせ、社員の約3/4のメンバーが参加しました。
・チームビルディング施策
- “チームメンバーを知る企画“として、レーダーチャートの作成/予想、チームのキャッチコピー作成等のワークを実施
【業務の変更の範囲】
無
| 想定年収 | 600 〜 1,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社Laboro.AI
【全国フルリモート×フルフレックス】MLOpsエンジニア/ビジネス成果に寄与するAI開発 のリモートワーク求人
■お仕事内容
クライアントのビジネス課題解決のため、機械学習エンジニアが開発したAIモデルを円滑に本番環境へ届け、
その価値を最大化し続けるための「機械学習基盤」と「MLOpsパイプライン」の設計、構築、運用をリードしていただきます。
<ミッション>
単にインフラを構築するだけでなく、「データが生まれてから、AIモデルとして価値を発揮し続けるまで」の
一連の流れを自動化・効率化する仕組みを創り上げることがミッションです。
<業務イメージ>
①データ基盤の整備(ETLパイプライン)
ビジネスデータを蓄積するためのデータレイクやDWHを準備します。
データが溜まったら、機械学習エンジニアが利用しやすい形に情報を加工・整理するETLパイプラインを構築します。
②AI開発環境と機械学習パイプラインの構築
加工されたデータを容易に呼び出せる、Jupyter Notebookなどの開発環境を準備します。
モデルの学習・評価を自動化する「機械学習パイプライン」を構築します。
③モデル配信と運用(デプロイメントパイプライン)
開発されたAIモデルを、システム開発エンジニアが作るアプリケーションに簡単に組み込めるよう、
API化して配信する「デプロイメントパイプライン」を構築します。
モデルの精度を自動でモニタリングし、精度が低下した際に再学習を促す仕組みを構築します。
上記の仕組み全体をテンプレート化し、様々なプロジェクトで再利用できるようにすることで、
会社全体のAI開発の生産性向上を担っていただきたいです。
また、モデルの再現性や公平性を担保するモデルガバナンスの実現も重要な役割です。
OSSやクラウドのマネージドサービスなど既存のミドルウェアを最適に組み合わせ、
「どうすれば価値を最大化できるか」を考えるアーキテクトとしての役割も期待しています。
■本ポジションの魅力
・日本を代表する大手企業のプロジェクトへ主体的に参画することができる。
・最先端の技術を活用したML基盤の構築、運用に関わることができる。
・MLOpsにチャレンジしたい、もっと大きな視野で仕事をしたいという想いを叶えることができる。
・大手企業向けにカスタムAIを提供している優秀なコンサルやエンジニアと共に仕事ができる。
・新組織作り(組織体制や評価制度など)へ主体的に関わることができる。
■募集要項
Laboro.AIは「全ての産業の新たな姿を作る」、「テクノロジーとビジネスを、つなぐ」をミッションに、
お客様の課題に沿ってオーダーメイドのAIソリューション『カスタムAI』を提供します。
私たちの強みは、アカデミックな知見とビジネス現場への深い理解を両立させ、
クライアントの真の課題解決に貢献するAIを開発・導入できること。多様な業界でAIプロジェクトが急速に拡大する中、
AI開発の品質とスピードを飛躍的に向上させる「MLOps基盤」の存在が不可欠となっています。
今回募集するのは、データからモデル、そしてビジネス価値創出までを繋ぐ
「仕組み」を構築するMLOpsエンジニアです。機械学習エンジニアがモデル開発に真に集中できる環境を創り出し、
AIの社会実装を根幹から支える。そんなダイナミックな役割に、私たちと共に挑戦しませんか?
【業務の変更の範囲】
無
クライアントのビジネス課題解決のため、機械学習エンジニアが開発したAIモデルを円滑に本番環境へ届け、
その価値を最大化し続けるための「機械学習基盤」と「MLOpsパイプライン」の設計、構築、運用をリードしていただきます。
<ミッション>
単にインフラを構築するだけでなく、「データが生まれてから、AIモデルとして価値を発揮し続けるまで」の
一連の流れを自動化・効率化する仕組みを創り上げることがミッションです。
<業務イメージ>
①データ基盤の整備(ETLパイプライン)
ビジネスデータを蓄積するためのデータレイクやDWHを準備します。
データが溜まったら、機械学習エンジニアが利用しやすい形に情報を加工・整理するETLパイプラインを構築します。
②AI開発環境と機械学習パイプラインの構築
加工されたデータを容易に呼び出せる、Jupyter Notebookなどの開発環境を準備します。
モデルの学習・評価を自動化する「機械学習パイプライン」を構築します。
③モデル配信と運用(デプロイメントパイプライン)
開発されたAIモデルを、システム開発エンジニアが作るアプリケーションに簡単に組み込めるよう、
API化して配信する「デプロイメントパイプライン」を構築します。
モデルの精度を自動でモニタリングし、精度が低下した際に再学習を促す仕組みを構築します。
上記の仕組み全体をテンプレート化し、様々なプロジェクトで再利用できるようにすることで、
会社全体のAI開発の生産性向上を担っていただきたいです。
また、モデルの再現性や公平性を担保するモデルガバナンスの実現も重要な役割です。
OSSやクラウドのマネージドサービスなど既存のミドルウェアを最適に組み合わせ、
「どうすれば価値を最大化できるか」を考えるアーキテクトとしての役割も期待しています。
■本ポジションの魅力
・日本を代表する大手企業のプロジェクトへ主体的に参画することができる。
・最先端の技術を活用したML基盤の構築、運用に関わることができる。
・MLOpsにチャレンジしたい、もっと大きな視野で仕事をしたいという想いを叶えることができる。
・大手企業向けにカスタムAIを提供している優秀なコンサルやエンジニアと共に仕事ができる。
・新組織作り(組織体制や評価制度など)へ主体的に関わることができる。
■募集要項
Laboro.AIは「全ての産業の新たな姿を作る」、「テクノロジーとビジネスを、つなぐ」をミッションに、
お客様の課題に沿ってオーダーメイドのAIソリューション『カスタムAI』を提供します。
私たちの強みは、アカデミックな知見とビジネス現場への深い理解を両立させ、
クライアントの真の課題解決に貢献するAIを開発・導入できること。多様な業界でAIプロジェクトが急速に拡大する中、
AI開発の品質とスピードを飛躍的に向上させる「MLOps基盤」の存在が不可欠となっています。
今回募集するのは、データからモデル、そしてビジネス価値創出までを繋ぐ
「仕組み」を構築するMLOpsエンジニアです。機械学習エンジニアがモデル開発に真に集中できる環境を創り出し、
AIの社会実装を根幹から支える。そんなダイナミックな役割に、私たちと共に挑戦しませんか?
【業務の変更の範囲】
無
| 想定年収 | 800 〜 1,200 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フルフレックス制度
コアタイム:なし
フレキシブルタイム:なし
標準労働時間:09:45 ~ 18:30 (休憩時間60分)
働き方: フルフレックス制 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 11年 | 従業員数 | 107人 |
株式会社エムニ
【フルリモ/スーパーフレックス/東京・京都/AI・機械学習エンジニア/Pythonを用いたAI/機械学習モデルの実務開発経験2年以上】東大・京大発、学術知見で製造業にAI革新を牽引する企業! のリモートワーク求人
【募集背景】
事業成長による増員募集です。
製造業をはじめ日本を代表するエンタープライズ企業のお客様からのご依頼が増え、PoC だけでなく本開発・運用まで見据えた長期的な協業が多くなっており、有償契約は創業2年で累計100件にのぼります。
また、特許・図面・技能伝承など、製造業特化の新しいプロダクト領域も次々に立ち上がりつつあります。
こうした事業の広がりに伴い、AIモデル開発を担うエンジニアの活躍機会が大きく増えている状況です。
より多様な案件に応えられる体制をつくるため、今回、新たにAIエンジニアをお迎えしたいと考えています。
【仕事内容の概要】
本ポジションは、PoC で検証された AI モデルを「実際の業務やプロダクトで価値を出す形」に仕上げることに主軸を置いた AI エンジニアポジションです。
PoC フェーズでは、AI PM とともに
課題整理
モデル選定
プロトタイプ実装
精度検証
など、本開発を見据えた価値検証に実戦ベースで関わります。
本開発では Web エンジニアと連携し、AI モデルをアプリケーションや現場業務に統合するフェーズにも踏み込みます。
特に製造業領域では、点検記録・図面・手書き情報など多様なデータを扱うため、データ処理からモデル改善、推論基盤構築まで幅広いスキルが求められます。
小規模で動くプロジェクトが多く、自分のアウトプットがそのままプロダクトの価値に直結する環境です。
裁量が大きい分、実務を通して一気に経験の幅を広げることができます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
案件は少人数のクロスファンクショナルチームで進行し、平均的な規模の案件で
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発ではWebエンジニアと連携したAI機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI エンジニアは、AI PM・Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームで案件を推進します。
PoC 段階では AI PM と共に問題設定・検証を行い、京大・松尾研を中心とした学生インターンと並走しながらモデル開発を進めます。
本開発フェーズではWebエンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだAI機能をプロダクトとして統合する経験を積むことができます。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
事業成長による増員募集です。
製造業をはじめ日本を代表するエンタープライズ企業のお客様からのご依頼が増え、PoC だけでなく本開発・運用まで見据えた長期的な協業が多くなっており、有償契約は創業2年で累計100件にのぼります。
また、特許・図面・技能伝承など、製造業特化の新しいプロダクト領域も次々に立ち上がりつつあります。
こうした事業の広がりに伴い、AIモデル開発を担うエンジニアの活躍機会が大きく増えている状況です。
より多様な案件に応えられる体制をつくるため、今回、新たにAIエンジニアをお迎えしたいと考えています。
【仕事内容の概要】
本ポジションは、PoC で検証された AI モデルを「実際の業務やプロダクトで価値を出す形」に仕上げることに主軸を置いた AI エンジニアポジションです。
PoC フェーズでは、AI PM とともに
課題整理
モデル選定
プロトタイプ実装
精度検証
など、本開発を見据えた価値検証に実戦ベースで関わります。
本開発では Web エンジニアと連携し、AI モデルをアプリケーションや現場業務に統合するフェーズにも踏み込みます。
特に製造業領域では、点検記録・図面・手書き情報など多様なデータを扱うため、データ処理からモデル改善、推論基盤構築まで幅広いスキルが求められます。
小規模で動くプロジェクトが多く、自分のアウトプットがそのままプロダクトの価値に直結する環境です。
裁量が大きい分、実務を通して一気に経験の幅を広げることができます。
【仕事内容の詳細】
■ 現在の事業状況と開発体制
エムニは、製造業領域の PoC 〜本開発までを一気通貫で支援しています。
案件は少人数のクロスファンクショナルチームで進行し、平均的な規模の案件で
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
といった体制で開発を行います。
PoC 段階では AI モデルの価値検証、本開発ではWebエンジニアと連携したAI機能のアプリ統合など、エムニならではの「AI 実装の全工程」に触れられる点が特徴です。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
AI エンジニアは、AI PM・Web エンジニア・学生インターン・業務委託エンジニアと協働しながら、少人数のクロスファンクショナルチームで案件を推進します。
PoC 段階では AI PM と共に問題設定・検証を行い、京大・松尾研を中心とした学生インターンと並走しながらモデル開発を進めます。
本開発フェーズではWebエンジニアと連携し、LLM/RAG/画像・音声モデルを組み込んだAI機能をプロダクトとして統合する経験を積むことができます。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 600 〜 800 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: ◼︎勤務時間
フレックスタイム制(コアタイム:なし)
- フレキシブルタイム:5:00~22:00
※スーパーフレックスタイム制
- 標準労働時間:1日8時間
※月間所定労働時間:160時間前後
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~20時間) 休憩時間: 60分 |
||
| 設立年数 | 4年 | 従業員数 | 151人 |
株式会社エムニ
【フルリモ/スーパーフレックス/東京・京都/フルスタックエンジニア/PythonまたはTypeScriptを用いた開発経験3年以上】東大・京大発、学術知見で製造業にAI革新を牽引する企業! のリモートワーク求人
【募集背景】
事業成長に伴う増員募集です。
創業から約2年で有償契約は累計100件を超え、PoC に留まらず、本開発・運用までを前提とした長期協業案件が着実に増えています。
AI モデルの検証だけでなく「業務に組み込み、現場で使われ続ける Web システムとして成立させること」が、プロダクト価値の中核になってきました。
その中で、PoC で検証された AI を前提に、Web アプリケーションや業務システムとして実装・改善を積み重ねていく Web エンジニアの役割が、これまで以上に重要になっています。
そこで今回、AI エンジニアやリード Web エンジニアと連携しながら、AI を前提とした Web システムの設計・実装を担う WEB アプリケーションエンジニア(フルスタック)を新たに募集します。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、AIを組み込んだWebアプリケーション・業務システムの設計・開発・改善を担当します。
PoC フェーズでは、AI PM・AIエンジニアと連携しながら、
AIモデルの特性や制約を踏まえたアプリケーション構成の検討
Web API/画面設計の検討
プロトタイプの実装・検証
など、本開発を見据えた技術検証を行います。
本開発フェーズでは開発の中核として、LLM/RAG/画像・音声モデルを組み込んだAI機能を、Webアプリケーションや業務システムとして実装・統合します。
フロントエンド・バックエンド・インフラまでを横断し、AIが現場で使われ続けるシステムを成立させます。
小規模なプロジェクトが多く、設計や実装の判断が、そのままプロダクトの品質や使い勝手に直結する環境です。
裁量を持って手を動かしながら、フルスタックに経験の幅を広げることができます。
【仕事内容の詳細】
■ 開発体制と期待する役割の補足
平均的な案件では、以下のような体制で開発を行います。
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
Web エンジニアには、本開発フェーズにおける中核メンバーとして、AI機能を前提としたアプリケーション設計・実装を担っていただきます。
特に、PoCで検証されたAIを「実際に使われるシステム」として成立させるためのアーキテクチャ設計・実装方針の整理・改善が求められます。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
本ポジションの Web エンジニアは、AI PM や AI エンジニア、リード Web エンジニアと協働しながら、少人数のクロスファンクショナルチームの中核メンバーとして案件に関わります。
本開発フェーズでは、PoC で検証された AI を前提に、LLM/RAG/画像・音声モデルを組み込んだ AI 機能について、Web アプリケーションや業務システムへの実装・統合を担います。
フロントエンド・バックエンド・インフラを横断しながら、設計意図を理解した上で、実装面からプロダクトを成立させていく役割です。
Web 領域の技術方針はリード Web エンジニアが担い、その方針を踏まえつつ、AI 開発と Web 開発をつなぐ実装・設計の中心として、現場で使われ続けるシステムづくりに関わります。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
事業成長に伴う増員募集です。
創業から約2年で有償契約は累計100件を超え、PoC に留まらず、本開発・運用までを前提とした長期協業案件が着実に増えています。
AI モデルの検証だけでなく「業務に組み込み、現場で使われ続ける Web システムとして成立させること」が、プロダクト価値の中核になってきました。
その中で、PoC で検証された AI を前提に、Web アプリケーションや業務システムとして実装・改善を積み重ねていく Web エンジニアの役割が、これまで以上に重要になっています。
そこで今回、AI エンジニアやリード Web エンジニアと連携しながら、AI を前提とした Web システムの設計・実装を担う WEB アプリケーションエンジニア(フルスタック)を新たに募集します。
【仕事内容の概要】
製造業を中心としたクライアント企業の課題に対し、AIを組み込んだWebアプリケーション・業務システムの設計・開発・改善を担当します。
PoC フェーズでは、AI PM・AIエンジニアと連携しながら、
AIモデルの特性や制約を踏まえたアプリケーション構成の検討
Web API/画面設計の検討
プロトタイプの実装・検証
など、本開発を見据えた技術検証を行います。
本開発フェーズでは開発の中核として、LLM/RAG/画像・音声モデルを組み込んだAI機能を、Webアプリケーションや業務システムとして実装・統合します。
フロントエンド・バックエンド・インフラまでを横断し、AIが現場で使われ続けるシステムを成立させます。
小規模なプロジェクトが多く、設計や実装の判断が、そのままプロダクトの品質や使い勝手に直結する環境です。
裁量を持って手を動かしながら、フルスタックに経験の幅を広げることができます。
【仕事内容の詳細】
■ 開発体制と期待する役割の補足
平均的な案件では、以下のような体制で開発を行います。
PM : 1名
デモ開発 : PM + エンジニア 2〜3名
PoC:PM + AI エンジニア + 経験豊富なシニア業務委託 2〜3名
本開発 : Webエンジニアを含む 6名〜10名規模
Web エンジニアには、本開発フェーズにおける中核メンバーとして、AI機能を前提としたアプリケーション設計・実装を担っていただきます。
特に、PoCで検証されたAIを「実際に使われるシステム」として成立させるためのアーキテクチャ設計・実装方針の整理・改善が求められます。
【関わるサービス】
◼︎エムニについて
エムニが向き合っているのは、製造業の技能伝承・品質管理・設備保全といった現場固有の課題です。
熟練作業員が長年の経験や勘に基づいて行うカンコツ作業を可視化し、課題を解決する AI をオーダーメイドで開発しています。
◼︎製造業向け AI ソリューションの案件例
工場内オンプレ環境で動作する 現場向け AI チャットボットの開発
特許翻訳特化型独自LLMの開発
工場で用いられる点検日誌など、整備されていないナレッジのデータ化 など
また、オーダーメイド AIの開発により得られた知見を活かし、自社プロダクトの開発も行っています。
ご希望や経験を鑑みつつ、自社プロダクトの開発に関わっていただく機会もございます。
◼︎自社AIプロダクト群
AI特許ロケット(特許調査・翻訳支援プロダクト)
https://www.emuniinc.jp/service/ai-patent
AIインタビュアー(技能伝承・暗黙知の形式知化プロダクト)
https://www.emuniinc.jp/service/ai-interviewer
【関わるチーム】
本ポジションの Web エンジニアは、AI PM や AI エンジニア、リード Web エンジニアと協働しながら、少人数のクロスファンクショナルチームの中核メンバーとして案件に関わります。
本開発フェーズでは、PoC で検証された AI を前提に、LLM/RAG/画像・音声モデルを組み込んだ AI 機能について、Web アプリケーションや業務システムへの実装・統合を担います。
フロントエンド・バックエンド・インフラを横断しながら、設計意図を理解した上で、実装面からプロダクトを成立させていく役割です。
Web 領域の技術方針はリード Web エンジニアが担い、その方針を踏まえつつ、AI 開発と Web 開発をつなぐ実装・設計の中心として、現場で使われ続けるシステムづくりに関わります。
【知的好奇心とスピードが共存するチーム風土】
エムニは、スタートアップ特有のスピード感と、京大×松尾研の融合したアカデミアの知性・探究心が混ざり合った環境です。
事実ベースで議論するフラットさ
手を動かしながら素早く検証していく文化
学生・業務委託・正社員が役割に関係なく成果に向き合う空気
創業メンバーの CEO/COO がいずれも京都大学大学院でAIやエネルギー分野の研究を行い、その後松尾研究所で製造業向けAIやLLM開発に携わってきたバックグラウンドを持ちます。
経営陣全員がエンジニアであり、エンジニア気質のある風通しの良さが特徴です。
また、研究バックボーンの学生インターンも多いことから参画いただくメンバーから「研究室っぽい」と形容されることが多く、
仮説検証を楽しみながらスピード感をもって価値づくりに向き合いたい方にとってフィットしやすい文化です。
LT 会や社内勉強会も頻繁に開催しており、社内での知見の共有を大切にしています。
【AI ドリブンな開発環境】
技術環境は案件により多様ですが、社内では AI ドリブンな環境を構築しており、一例として以下のようなツール・技術を幅広く活用しています。
AI駆動経営を事業方針に掲げ、独自にAI駆動ワーキング制度を制定し、社員の AI ツール利用料を無制限で全額補助しています。
ChatGPT, Claude, Gemini, LangChain, LangGraph, Langfuse, Amazon Bedrock, Azure OpenAI Service, Vertex AI, GitHub Copilot, Cursor, CodeRabbit など
LLM活用を前提とした開発が一般化しており、生産性の高い開発文化が浸透しています。
【会社概要】
株式会社エムニは、京都大学・松尾研究室の最先端研究を背景に生まれたAIスタートアップです。
「AIで働く環境を幸せに、世界にワクワクを」をミッションに掲げ、日本の製造業を中心とした"現場の課題"に深く入り込み、AI によるソリューション開発と自社プロダクト開発の両面で事業を拡大しています。
アカデミアの研究基盤とハイレベルな開発力を強みに創業2年でメンバー140名規模まで急成長し、大手製造業・自治体・知財領域など多分野で協業が進む、国内でも稀有な AI 専門集団です。
代表取締役CEO下野は「Forbes JAPAN 30 UNDER 30 2025」世界を変える30歳未満30人としてSCIENCE&SOCIAL部門に選出され、取締役COO後藤は京都大学情報学同窓会理事に就任。
【エムニの特徴】
単なる PoC に留まらず、現場オペレーションを変えるレベルまでAIを実装する高精度な開発力に強みがあります。
東京都庁との「設計書 AI 自動確認」、GPT-4o や DeepL を凌駕する特許翻訳特化型 LLM の構築、製造現場向けオンプレ AI チャットボットなど、
日本を代表するエンタープライズ企業を中心に、製造系企業に向けた AI の活用支援から実装までをリードしています。
案件の PoC から提案を行うため、0→1 の高速開発文化が浸透しており、エンジニアが課題設定から PoC、デモ開発、顧客対話、本開発からその後の保守運用に至るまで一貫して関わるため、
技術選定・アーキテクチャ設計・MLOps・クラウド構築など幅広いスキルを獲得できます。また、生成AIにとどまらずDeepLearningに関する案件や、
R&Dなど大企業との多岐にわたるプロジェクトに携わることができます。
蓄積された知見を「AI特許ロケット」「AIインタビュアー」など自社プロダクトに横展開させ、エンドユーザーへ真の価値を届ける開発を続けています。
今後もマルチプロダクト戦略に沿って0→100をコンパウンドに生み出す新規事業開発を展開していきます。
開発においてはAI駆動経営を事業方針に掲げ、全社員対象の「AI駆動ワーキング制度」を制定。AIネイティブに業務を再設計し、モダンな開発を推進し個々人のポテンシャルを最大限に開放します。
【製造業 × AI に特化する意義】
日本のGDP2割以上を占める日本の産業を支えてきた製造業界では、経験豊富な職人の知見が属人化し、また少子高齢化の加速が後押しし「匠の技の喪失」が深刻化しています。
エムニは、AI 活用を通じて暗黙知の形式知化・現場運用の自動化・現場の知的生産性を底上げすることで、製造業で働く人々に幸せとワクワクを届けてまいります。
ドメインエキスパートが多数在籍するエムニは、巨大な市場の広がる産業にインパクトを与えるソリューションを届け、世界に革新を起こしていきます。
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 600 〜 800 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: ◼︎勤務時間
フレックスタイム制(コアタイム:なし)
- フレキシブルタイム:5:00~22:00
※スーパーフレックスタイム制
- 標準労働時間:1日8時間
※月間所定労働時間:160時間前後
働き方: フルフレックス制 時間外労働の有無: 有(月平均10時間~20時間) 休憩時間: 60分 |
||
| 設立年数 | 4年 | 従業員数 | 151人 |
69件中 1件~10件
リモートワーク求人を探す
職種からリモートワーク求人を探す
- CTO
- VPoE
- テックリード
- ITコンサルタント
- ITアーキテクト
- プロジェクトマネージャー
- プロダクトマネージャー
- スクラムマスター
- PMO
- ブリッジSE
- プロジェクトリーダー
- webデザイナー
- UIUXデザイナー
- webディレクター
- デジタルマーケター
- ゲームデザイナー
- CGデザイナー
- インフラエンジニア
- SRE
- ネットワークエンジニア
- サーバーエンジニア
- セキュリティエンジニア
- システムエンジニア
- システムディレクター
- サーバーサイドエンジニア
- フロントエンドエンジニア
- マークアップコーダー
- iOSエンジニア
- Androidエンジニア
- ゲームエンジニア
- ゲームプランナー
- QAエンジニア
- テストエンジニア
- テスター
- AIエンジニア(DL/機械学習)
- データサイエンティスト
- データアナリスト
- BIエンジニア
- データベースエンジニア
- 社内SE
- ヘルプデスク
- テクニカルサポート
- CRE
開発経験からリモートワーク求人を探す
- Access
- ActionScript
- AD
- Android(Java)
- Angular
- Ansible
- AWS
- Azure
- C#
- C++
- CakePHP
- COBOL
- Cordova
- C言語
- Django
- EC-CUBE
- Electron
- Elixir
- Express.js
- Figma
- Firebase
- Flask
- Flutter
- FuelPHP
- GCP
- Go
- HTML/CSS
- Illustrator
- Java
- JavaScript
- Kotlin
- Kubernetes
- Laravel
- Linux
- MySQL
- Next.js
- Node.js
- Nuxt.js
- Objective-C
- Oracle
- Perl
- Photoshop
- PHP
- PL/SQL
- PostgreSQL
- Python
- R
- React
- React Native
- RPA(Biz Robo)
- RPA(UiPath)
- RPA(WinActor)
- Ruby on Rails
- Rust
- Salesforce
- SAP
- Scala
- Seasar2
- Sketch
- Spring
- Spring Boot
- SQL
- SQL Server
- Struts
- Swift
- Symfony
- Tableau
- Tensorflow
- Terraform
- Tresure Data
- TypeScript
- Unity
- VB
- VBA
- Vue.js
- WordPress
- Xamarin
- XD
働き方からリモートワーク求人を探す
リモートワークタイプからリモートワーク求人を探す
語学・国籍からリモートワーク求人を探す
Jobのタイトルが入ります
こちらの求人に応募します
Jobのタイトルが入ります
こちらの求人に応募します
への応募が完了しました。
ご応募ありがとうございます。
担当エージェントからの連絡をお待ちください。
Jobのタイトルが入ります
こちらの求人を辞退しますが間違いないですか?
への辞退が完了しました。
またのご応募お待ちしています。
既に応募済みの案件です。
求人への応募には
リラシクの利用を開始してください。
求人への応募にはご住所の入力が必要です。
予期せぬエラーが発生しました。