SQL×データサイエンティストのリモートワーク転職・求人情報一覧
25件中 1件~10件
株式会社Village AI
【全国フルリモート】データアナリスト■技術力・コンサル力が付く/地域創生にも携われる/案件多数 のリモートワーク求人
■お仕事内容:
データアナリストとして業務を行っていただきます。
入社後はまず、研修やデータハンドリング業務を行っていただき、その後、適切な案件へアサインいたします(目安:入社1か月程度経過後)。
▼データ分析およびデータ基盤開発
・SQLを用いたデータの抽出・加工
・Pythonによる分析ロジックやETLの開発
・BIツール(Power BI/Looker/Tableau等)の設計・構築
・既存データ基盤の改善やデータマート開発
▼AI・データ活用プロジェクトの推進サポート
・顧客ヒアリングと課題整理
・要件整理・仕様設計のサポート
・分析計画の作成、効果検証
▼生成AIを用いた業務改善・PoC・開発の実施
・OpenAI APIなどの利用
・プロトタイプの開発
・業務フロー改善の設計
▼クライアントとの折衝・コミュニケーション
・定例ミーティングにおける進捗共有
・技術的課題に対する提案
・プロジェクト運用改善の提案
【業務の変更の範囲】
無
データアナリストとして業務を行っていただきます。
入社後はまず、研修やデータハンドリング業務を行っていただき、その後、適切な案件へアサインいたします(目安:入社1か月程度経過後)。
▼データ分析およびデータ基盤開発
・SQLを用いたデータの抽出・加工
・Pythonによる分析ロジックやETLの開発
・BIツール(Power BI/Looker/Tableau等)の設計・構築
・既存データ基盤の改善やデータマート開発
▼AI・データ活用プロジェクトの推進サポート
・顧客ヒアリングと課題整理
・要件整理・仕様設計のサポート
・分析計画の作成、効果検証
▼生成AIを用いた業務改善・PoC・開発の実施
・OpenAI APIなどの利用
・プロトタイプの開発
・業務フロー改善の設計
▼クライアントとの折衝・コミュニケーション
・定例ミーティングにおける進捗共有
・技術的課題に対する提案
・プロジェクト運用改善の提案
【業務の変更の範囲】
無
| 想定年収 | 500 〜 800 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 【フレックス制】
コアタイム:10:00~15:00
フレキシブルタイム:07:00~22:00
標準労働時間:9:00~18:00
※仕事と育児を両立している社員もいるなど、家庭都合による勤務時間の調整可能です。
働き方: フレックス制(コアタイムあり) 時間外労働の有無: 有(月平均10時間) 休憩時間: 60分 |
||
| 企業概要 |
-
|
||
| 設立年数 | 6年 | 従業員数 | 6人 |
AMBL株式会社
【東京/ハイブリ/データサイエンティスト】成長企業でキャリアUP/裁量大きく活躍可◎ のリモートワーク求人
仕事内容
小売・サービス・金融・通信など、さまざまな業界におけるデータ分析基盤構築、顧客分析、需要予測、価格最適化、売上分析から市場動向分析、BIによるKPIの可視化・レポーティングまで、幅広いビジネス課題・マーケティング戦略に応えるデータ利活用をリード。
大手クライアント・大手SIerとの多数のプロジェクトにおいて、上流工程から下流工程までクライアントと伴走し、経営者・ビジネス担当者のデータドリブンな意思決定を支援します。
<業務内容>
ご経験・キャリア志向にあわせて、 1または 2、 1・2 の両方をお任せします。
また、上記にあわせて、PMO / PM / PLなどのプロジェクトマネジメントもお任せします。
1.データエンジニア・データ分析基盤構築エンジニア
さまざまなデータ分析・データ分析基盤における顧客課題解決の担当をいただきます。
・各種企業におけるデータ基盤構築・運用、データ利活用、データマネジメント、DX推進などに関する課題理解
・要件定義
・データパイプライン・データプラットフォーム・DWH・データマート・CDP・データベース (DB) などの設計/構築
・機械学習などのモデル構築
・BIツールにおけるダッシュボード設計/構築
・効果測定・分析、施策立案・実施、顧客に向けての報告業務
・生成AI活用におけるデータ整備
・データ関連プロジェクトにおける PMO / PM / PL 業務
・組織・プロジェクトにおける若手データエンジニアの育成・マネジメント
など
2.データサイエンティスト
データ利活用プロジェクトにおける中核者として、クライアントとのディスカッションを通じてスコープを決め、データドリブンな意思決定の効率化支援を担います。
・プロジェクトに必要となる企業保有データ (ビッグデータ) の要件分析
・製品・ソリューションを導入した際の効果検証 (PoC)
・BIツールを用いたデータ可視化・ダッシュボードの利活用提案
・データ分析における環境構築・データ処理フロー整備 (クラウド導入・データ収集・蓄積・データクレンジング)・
・機械学習などのモデル構築
・データ分析結果に基づいたレポート作成やソリューションの提案
・クライアントコミュニケーション
・データ関連プロジェクトにおける PMO / PM / PL 業務
・組織・プロジェクトにおける若手データサイエンティストの育成・マネジメント
など
<本ポジションの魅力>
・多種多様な大手クライアント先からの直受け案件が100パーセント
・データ利活用基盤の構築、BI システムの構築、データ分析そして運用などワンストップでソリューションを提供することができる
・多様な業界のデータ分析に携わることで、AI・データ分析を活用した社会価値創造に携わることができる
・PMO / PM / PL などの経験を活かすことができる
・プロジェクトに加え、ラインマネジメントにも携わるチャンスがある
<PJT例>
※多種多様な大手クライアント先からの直受け案件※
・オンラインサービスにおけるユーザー獲得/アクティブユーザー増/解約抑止のためのデータ分析
・モバイル決済サービスの加盟店向けのダッシュボードの運用と構築
・通信事業者向けデータ基盤及びダッシュボード構築
・航空業の会員向けデータ基盤構築
・大手食品会社向けDMP構築
・行動データのデータ分析基盤の設計支援
・メガバンク向けダッシュボードの運用と構築
・大手製造メーカーのサイト分析
・会員データを活用したプロモーションシナリオ検討と効果検証
・在庫などの需要予測
・生成AI向けデータ整備
など
この仕事で得られるもの
◎技術的スキルやデータの洞察力
データベース設計やクエリの最適化、データベース管理など多くの技術的スキルを磨ける案件を担当していただきます。それに加え、データベース内の情報を分析しパターンやトレンドを発見することで意思決定に根拠をもってアクションを起こすのに必要な洞察を得ることができます。データベース技術の進歩に追いつくために、常に学び続ける姿勢が必要になります。
◎お客様と共に創り上げる喜び
当社の案件のほとんどが、お客様から直接依頼を受けているものなので、「言われた通りに仕事をする」ではなく、「自ら提案を行っていく」がスタンダードです。データベースエンジニアは他の技術者や組織内の他の部門と連携してプロジェクトを推進する機会が多い職種です。チームワークと効果的なコミュニケーションを行うことで、お客様の心を動かし、チーム一丸となって共に創り上げる、【モノづくりの醍醐味】が味わえます。
◎どこでも通用する基礎能力
お客様は日本トップクラスの大規模企業ばかりなので、企画・開発プロジェクトも丁寧(かつ迅速)に進行します。「きめ細かい」シゴトを行うという、ビジネスマンにとって大切な基礎能力が【最高レベル】で身に付けられます。
【業務の変更の範囲】
会社の規定に準ずる
小売・サービス・金融・通信など、さまざまな業界におけるデータ分析基盤構築、顧客分析、需要予測、価格最適化、売上分析から市場動向分析、BIによるKPIの可視化・レポーティングまで、幅広いビジネス課題・マーケティング戦略に応えるデータ利活用をリード。
大手クライアント・大手SIerとの多数のプロジェクトにおいて、上流工程から下流工程までクライアントと伴走し、経営者・ビジネス担当者のデータドリブンな意思決定を支援します。
<業務内容>
ご経験・キャリア志向にあわせて、 1または 2、 1・2 の両方をお任せします。
また、上記にあわせて、PMO / PM / PLなどのプロジェクトマネジメントもお任せします。
1.データエンジニア・データ分析基盤構築エンジニア
さまざまなデータ分析・データ分析基盤における顧客課題解決の担当をいただきます。
・各種企業におけるデータ基盤構築・運用、データ利活用、データマネジメント、DX推進などに関する課題理解
・要件定義
・データパイプライン・データプラットフォーム・DWH・データマート・CDP・データベース (DB) などの設計/構築
・機械学習などのモデル構築
・BIツールにおけるダッシュボード設計/構築
・効果測定・分析、施策立案・実施、顧客に向けての報告業務
・生成AI活用におけるデータ整備
・データ関連プロジェクトにおける PMO / PM / PL 業務
・組織・プロジェクトにおける若手データエンジニアの育成・マネジメント
など
2.データサイエンティスト
データ利活用プロジェクトにおける中核者として、クライアントとのディスカッションを通じてスコープを決め、データドリブンな意思決定の効率化支援を担います。
・プロジェクトに必要となる企業保有データ (ビッグデータ) の要件分析
・製品・ソリューションを導入した際の効果検証 (PoC)
・BIツールを用いたデータ可視化・ダッシュボードの利活用提案
・データ分析における環境構築・データ処理フロー整備 (クラウド導入・データ収集・蓄積・データクレンジング)・
・機械学習などのモデル構築
・データ分析結果に基づいたレポート作成やソリューションの提案
・クライアントコミュニケーション
・データ関連プロジェクトにおける PMO / PM / PL 業務
・組織・プロジェクトにおける若手データサイエンティストの育成・マネジメント
など
<本ポジションの魅力>
・多種多様な大手クライアント先からの直受け案件が100パーセント
・データ利活用基盤の構築、BI システムの構築、データ分析そして運用などワンストップでソリューションを提供することができる
・多様な業界のデータ分析に携わることで、AI・データ分析を活用した社会価値創造に携わることができる
・PMO / PM / PL などの経験を活かすことができる
・プロジェクトに加え、ラインマネジメントにも携わるチャンスがある
<PJT例>
※多種多様な大手クライアント先からの直受け案件※
・オンラインサービスにおけるユーザー獲得/アクティブユーザー増/解約抑止のためのデータ分析
・モバイル決済サービスの加盟店向けのダッシュボードの運用と構築
・通信事業者向けデータ基盤及びダッシュボード構築
・航空業の会員向けデータ基盤構築
・大手食品会社向けDMP構築
・行動データのデータ分析基盤の設計支援
・メガバンク向けダッシュボードの運用と構築
・大手製造メーカーのサイト分析
・会員データを活用したプロモーションシナリオ検討と効果検証
・在庫などの需要予測
・生成AI向けデータ整備
など
この仕事で得られるもの
◎技術的スキルやデータの洞察力
データベース設計やクエリの最適化、データベース管理など多くの技術的スキルを磨ける案件を担当していただきます。それに加え、データベース内の情報を分析しパターンやトレンドを発見することで意思決定に根拠をもってアクションを起こすのに必要な洞察を得ることができます。データベース技術の進歩に追いつくために、常に学び続ける姿勢が必要になります。
◎お客様と共に創り上げる喜び
当社の案件のほとんどが、お客様から直接依頼を受けているものなので、「言われた通りに仕事をする」ではなく、「自ら提案を行っていく」がスタンダードです。データベースエンジニアは他の技術者や組織内の他の部門と連携してプロジェクトを推進する機会が多い職種です。チームワークと効果的なコミュニケーションを行うことで、お客様の心を動かし、チーム一丸となって共に創り上げる、【モノづくりの醍醐味】が味わえます。
◎どこでも通用する基礎能力
お客様は日本トップクラスの大規模企業ばかりなので、企画・開発プロジェクトも丁寧(かつ迅速)に進行します。「きめ細かい」シゴトを行うという、ビジネスマンにとって大切な基礎能力が【最高レベル】で身に付けられます。
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 650 〜 1,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 | |||
| 企業概要 |
【★事業/サービス内容】
AMBL株式会社は、AI活用を中心に、クラウドネイティブ、UXデザイン、マーケティングの4つの事業領域でデジタルトランスフォーメーション(DX)を支援しています。AIを活用した課題解決や人材育成、クラウドネイティブなシステム開発、ユーザー体験の最適化、そしてブランド戦略とクリエイティブに特化したマーケティングを提供し、企業のDX推進を総合的にサポートしています 【★社風/文化】 AMBL株式会社は、社員の自主性とチャレンジ精神を尊重する社風が特徴です。若手社員にも積極的に挑戦の機会を与え、OJT制度やチーム内のサポート体制が整っています。また、社員同士のコミュニケーションを大切にし、フレンドリーで協力的な環境が醸成されています 【★働き方/リモートワーク】 AMBL株式会社では、フレックス制度やリモートワークを積極的に導入しており、柔軟な働き方が可能です。リモートワークに適したセキュリティ環境やコミュニケーションツールの提供により、社員が効率的に働ける環境を整えています。また、有給の1時間単位での取得や育児の時短勤務など、ライフステージに応じた働き方をサポートしています |
||
| 設立年数 | 26年 | 従業員数 | 544人 |
株式会社エーピーコミュニケーションズ
★【フルリモート/自社・受託/データエンジニア・データサイエンティスト/PythonやSQLでのコーディング& AzureやAWSでの環境構築・運用経験】ITインフラ領域に特化し、クラウド・自動化・AIなど先端技術を積極的に取り入れ、SIer業界の常識を変える企業! のリモートワーク求人
■業務内容
Lakehouse部では、クラウド上でデータの格納・処理・分析・機械学習まで一気通貫で扱える Lakehouse プラットフォームであるDatabricksを活用し、
お客様にデータ&AIを活用いただけるよう、データやインフラ基盤の構築や内製化支援をしています。
本求人で採用する方には、当部のデータエンジニア、データサイエンティストとしてのご活躍をお願いします。
採用後は、入社研修の後、下記の業務をお任せいたします。
- データ基盤環境(データレイク・DWH)の設計、構築
- 各種データの収集、クレンジング、統合、最適化
- ETL/ELTパイプラインの設計、実装(Python,Airflow, dbtなど)
- ビッグデータ処理基盤の設計、運用(Spark、Hadoopなど)
- BIツール(Tableau、Power BIなど)向けのデータマート構築
- ユーザートレーニング、内製化の支援
■この仕事で得られること
<大規模案件の提案経験>
Databricks やMicrosoft など大手パートナー企業や大手顧客との商談に関与し、数千万規模の案件提案を経験できます。
<データプラットフォーム領域での専門性>
Databricks をはじめとしたクラウドデータ基盤の知見を身につけ、今後市場価値の高い人材として成長できます。
<キャリアの幅の拡張>
クラウドインフラ、データエンジニア・サイエンスに加え、AI領域など、プロジェクトを通じてキャリアの幅を広げていただく事が可能です。
将来的には、リーダーやマネジメントポジションへのチャレンジも大歓迎です。
■プロジェクト事例
製造業(自動車・ヘルスケア機器)や金融業、通信業界を中心に、Databricksを活用したデータ活用基盤の構築・生成AI導入プロジェクトが増加しています。
某製造系企業様:DatabricksとAWSを活用したストリーミング分析基盤の構築とCI/CD整備
某通信系企業様:社内技術文書の検索・要約AIアプリケーションの構築(RAG・OpenAI活用)
某金融系企業様:既存Oracle基盤からLakehouse環境への移行支援とデータパイプライン再構成
某化学メーカー様:AutoMLを用いた原材料価格の時系列予測モデルとダッシュボード実装
某家電メーカー様:TerraformによるDatabricks環境の再構築とコスト最適化PoC など
■業務の進め方の例
<案件開始~2週間>
・データプラットフォームやプロダクト周辺のクラウド設計、構築(AzureやAWS)
・現状のデータの中身やフォーマットについてヒアリング
・Databricksを活用する計画について提案、データ内容や進め方に関する意見交換
<1か月~2か月目>
・データ利活用に向けた分析基盤のインフラ構築と整備(Databricks環境の構築等)
・データ利活用に向けたデータ整形とプロセスの整備
※最終的に「新規のデータが発生した際にお客様側でデータ追加・調整・再構成等が出来る状態」にするための整備
<2か月~3か月目>
・ダッシュボードの試作
・納品、仕様の説明や利活用についてお客様への説明
■キャリアパス
エンジニアの学びたい技術や目指すキャリアに応じて業務をお任せします。
例:データ収集やデータ統合、仮説検証、モデル構築、データの可視化等々
■メンバー構成
2022年に新設されたばかりで、様々なバックグラウンドをもつ幅広い世代が集まった多様性の高いチームです
※男女比 1:1 とバランスの取れたチーム構成
部長:1名
プロジェクトマネージャー:2名
エンジニアリングマネージャー:1名
データエンジニア/サイエンティスト、インフラエンジニア:7名
プリセールス、セールス&マーケティング:数名(他部門と兼務で対応中)
■募集部門について
当求人はGlobal Data+AI事業部 Lakehouse部の求人となります。
<Global Data+AI事業部>
グローバルSI案件における提案・PMを中心に手がけるグローバルエンジニアリング部と、
データ&AI分析基盤の構築や内製化の支援を行うLakehouse部で構成される事業部です。
ITインフラ、データAI基盤、Webアプリ開発や運用まで一気通貫してサポートできることを強みとしています。
<グローバルエンジニアリング部>
「技術力」と「英語力」の両方が備わったグローバルエンジニアとしてのキャリアに挑戦出来る環境です。
部内の公用語を英語で、社内ミーティングも英語で行っています。
<Lakehouse部>
インフラエンジニア、データエンジニア、データサイエンティスト、MLエンジニアと色々な強みを持ったメンバー多数。外国籍の方や女性が多いのが特徴です。
①カルチャー
・設立4年目の比較的若い組織で、フラットな文化
・一人ひとりが自立しつつ、互いにリスペクトを持ち支え合うことを大切にしています
・インプット&アウトプット文化があり、技術ブログ執筆や国内外イベント参加も行っています
②業務環境
・Databricks、Microsoftとパートナー契約を締結しており、学習&検証環境が充実
・メンバーのバックグラウンドを活かし、多様な視点から意見を出し、品質を高めています
③ワークライフバランス
・管理者含め育児をしながら働くメンバーもおり、ワークライフバランスへの理解が高い職場です
・平時は原則リモートワークとなるため、居住地域にとらわれず働くことができます
・Slackチャンネルの活用など、心理的安全性を意識した環境です
<募集部門の紹介>
・Lakehouse部部長 市村からのメッセージ
https://www.ap-com.co.jp/blog/archives/10351#article
・Lakehouse部 サービスページ
https://www.ap-com.co.jp/service/data_ai/
・Databricks Data+AI Summit 2025 現地レポート
https://www.ap-com.co.jp/data_ai_summit/
■募集背景
データ収集がメインタスクになりAI戦略まで進まない等、国内でデータ&AIを活用している事例はまだ少ないと感じております。
当社は日本市場のデータ&AI文化を根本から変えたく、ビッグデータを使用したAIによる分析やデータ利活用等、
データマネジメントを推進するために事業を一緒に推進いただける方を募集しております。
■参考情報
Lakehouse部の取り組みが分かる参考情報
・Databricks関連 技術ブログ記事一覧
https://techblog.ap-com.co.jp/search?q=Databricks
・Databricks「Data + AI Summit 2025」 現地レポート
https://www.ap-com.co.jp/blog/archives/11852#article
・Databricks活用の無料トレーニングイベント「Data & AI BootCamp」レポート
https://www.ap-com.co.jp/blog/archives/11701#article
・社内向け講座紹介 「AI・データ解析プラットフォーム Databricks を体験しよう!」
https://www.ap-com.co.jp/blog/archives/11584#article
・産学連携 岩手大学で生成AIセミナーを開催!
https://www.ap-com.co.jp/blog/archives/11107#article
【業務の変更の範囲】
会社の定める範囲
Lakehouse部では、クラウド上でデータの格納・処理・分析・機械学習まで一気通貫で扱える Lakehouse プラットフォームであるDatabricksを活用し、
お客様にデータ&AIを活用いただけるよう、データやインフラ基盤の構築や内製化支援をしています。
本求人で採用する方には、当部のデータエンジニア、データサイエンティストとしてのご活躍をお願いします。
採用後は、入社研修の後、下記の業務をお任せいたします。
- データ基盤環境(データレイク・DWH)の設計、構築
- 各種データの収集、クレンジング、統合、最適化
- ETL/ELTパイプラインの設計、実装(Python,Airflow, dbtなど)
- ビッグデータ処理基盤の設計、運用(Spark、Hadoopなど)
- BIツール(Tableau、Power BIなど)向けのデータマート構築
- ユーザートレーニング、内製化の支援
■この仕事で得られること
<大規模案件の提案経験>
Databricks やMicrosoft など大手パートナー企業や大手顧客との商談に関与し、数千万規模の案件提案を経験できます。
<データプラットフォーム領域での専門性>
Databricks をはじめとしたクラウドデータ基盤の知見を身につけ、今後市場価値の高い人材として成長できます。
<キャリアの幅の拡張>
クラウドインフラ、データエンジニア・サイエンスに加え、AI領域など、プロジェクトを通じてキャリアの幅を広げていただく事が可能です。
将来的には、リーダーやマネジメントポジションへのチャレンジも大歓迎です。
■プロジェクト事例
製造業(自動車・ヘルスケア機器)や金融業、通信業界を中心に、Databricksを活用したデータ活用基盤の構築・生成AI導入プロジェクトが増加しています。
某製造系企業様:DatabricksとAWSを活用したストリーミング分析基盤の構築とCI/CD整備
某通信系企業様:社内技術文書の検索・要約AIアプリケーションの構築(RAG・OpenAI活用)
某金融系企業様:既存Oracle基盤からLakehouse環境への移行支援とデータパイプライン再構成
某化学メーカー様:AutoMLを用いた原材料価格の時系列予測モデルとダッシュボード実装
某家電メーカー様:TerraformによるDatabricks環境の再構築とコスト最適化PoC など
■業務の進め方の例
<案件開始~2週間>
・データプラットフォームやプロダクト周辺のクラウド設計、構築(AzureやAWS)
・現状のデータの中身やフォーマットについてヒアリング
・Databricksを活用する計画について提案、データ内容や進め方に関する意見交換
<1か月~2か月目>
・データ利活用に向けた分析基盤のインフラ構築と整備(Databricks環境の構築等)
・データ利活用に向けたデータ整形とプロセスの整備
※最終的に「新規のデータが発生した際にお客様側でデータ追加・調整・再構成等が出来る状態」にするための整備
<2か月~3か月目>
・ダッシュボードの試作
・納品、仕様の説明や利活用についてお客様への説明
■キャリアパス
エンジニアの学びたい技術や目指すキャリアに応じて業務をお任せします。
例:データ収集やデータ統合、仮説検証、モデル構築、データの可視化等々
■メンバー構成
2022年に新設されたばかりで、様々なバックグラウンドをもつ幅広い世代が集まった多様性の高いチームです
※男女比 1:1 とバランスの取れたチーム構成
部長:1名
プロジェクトマネージャー:2名
エンジニアリングマネージャー:1名
データエンジニア/サイエンティスト、インフラエンジニア:7名
プリセールス、セールス&マーケティング:数名(他部門と兼務で対応中)
■募集部門について
当求人はGlobal Data+AI事業部 Lakehouse部の求人となります。
<Global Data+AI事業部>
グローバルSI案件における提案・PMを中心に手がけるグローバルエンジニアリング部と、
データ&AI分析基盤の構築や内製化の支援を行うLakehouse部で構成される事業部です。
ITインフラ、データAI基盤、Webアプリ開発や運用まで一気通貫してサポートできることを強みとしています。
<グローバルエンジニアリング部>
「技術力」と「英語力」の両方が備わったグローバルエンジニアとしてのキャリアに挑戦出来る環境です。
部内の公用語を英語で、社内ミーティングも英語で行っています。
<Lakehouse部>
インフラエンジニア、データエンジニア、データサイエンティスト、MLエンジニアと色々な強みを持ったメンバー多数。外国籍の方や女性が多いのが特徴です。
①カルチャー
・設立4年目の比較的若い組織で、フラットな文化
・一人ひとりが自立しつつ、互いにリスペクトを持ち支え合うことを大切にしています
・インプット&アウトプット文化があり、技術ブログ執筆や国内外イベント参加も行っています
②業務環境
・Databricks、Microsoftとパートナー契約を締結しており、学習&検証環境が充実
・メンバーのバックグラウンドを活かし、多様な視点から意見を出し、品質を高めています
③ワークライフバランス
・管理者含め育児をしながら働くメンバーもおり、ワークライフバランスへの理解が高い職場です
・平時は原則リモートワークとなるため、居住地域にとらわれず働くことができます
・Slackチャンネルの活用など、心理的安全性を意識した環境です
<募集部門の紹介>
・Lakehouse部部長 市村からのメッセージ
https://www.ap-com.co.jp/blog/archives/10351#article
・Lakehouse部 サービスページ
https://www.ap-com.co.jp/service/data_ai/
・Databricks Data+AI Summit 2025 現地レポート
https://www.ap-com.co.jp/data_ai_summit/
■募集背景
データ収集がメインタスクになりAI戦略まで進まない等、国内でデータ&AIを活用している事例はまだ少ないと感じております。
当社は日本市場のデータ&AI文化を根本から変えたく、ビッグデータを使用したAIによる分析やデータ利活用等、
データマネジメントを推進するために事業を一緒に推進いただける方を募集しております。
■参考情報
Lakehouse部の取り組みが分かる参考情報
・Databricks関連 技術ブログ記事一覧
https://techblog.ap-com.co.jp/search?q=Databricks
・Databricks「Data + AI Summit 2025」 現地レポート
https://www.ap-com.co.jp/blog/archives/11852#article
・Databricks活用の無料トレーニングイベント「Data & AI BootCamp」レポート
https://www.ap-com.co.jp/blog/archives/11701#article
・社内向け講座紹介 「AI・データ解析プラットフォーム Databricks を体験しよう!」
https://www.ap-com.co.jp/blog/archives/11584#article
・産学連携 岩手大学で生成AIセミナーを開催!
https://www.ap-com.co.jp/blog/archives/11107#article
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 600 〜 1,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 10:00~18:30(休憩時間 12:00~13:00)※ 所定労働時間 7.5時間
働き方: 固定時間制(9時~18時、10時~19時など) 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 32年 | 従業員数 | 500人 |
株式会社エーピーコミュニケーションズ
★【フルリモート/自社・受託/データエンジニア・データサイエンティスト(ポテンシャル)Lakehouse/AzureやAWSでの環境構築・運用経験&Python・SQLコーディング経験歓迎】ITインフラ領域に特化し、クラウド・自動化・AIなど先端技術を積極的に取り入れ、SIer業界の常識を変える企業! のリモートワーク求人
【部署について】
募集部門について
当求人はGlobal Data+AI事業部 Lakehouse部の求人となります。
<Global Data+AI事業部>
グローバルSI案件における提案・PMを中心に手がけるグローバルエンジニアリング部と、
データ&AI分析基盤の構築や内製化の支援を行うLakehouse部で構成される事業部です。ITインフラ、データAI基盤、Webアプリ開発や運用まで一気通貫してサポートできることを強みとしています。
<グローバルエンジニアリング部>
「技術力」と「英語力」の両方が備わったグローバルエンジニアとしてのキャリアに挑戦出来る環境です。部内の公用語を英語で、社内ミーティングも英語で行っています。
<Lakehouse部>
インフラエンジニア、データエンジニア、データサイエンティスト、MLエンジニアと色々な強みを持ったメンバー多数。外国籍の方や女性が多いのが特徴です。
①カルチャー
・設立4年目の比較的若い組織で、フラットな文化
・一人ひとりが自立しつつ、互いにリスペクトを持ち支え合うことを大切にしています
・インプット&アウトプット文化があり、技術ブログ執筆や国内外イベント参加も行っています
②業務環境
・Databricks、Microsoftとパートナー契約を締結しており、学習&検証環境が充実
・メンバーのバックグラウンドを活かし、多様な視点から意見を出し、品質を高めています
③ワークライフバランス
・管理者含め育児をしながら働くメンバーもおり、ワークライフバランスへの理解が高い職場です
・平時は原則リモートワークとなるため、居住地域にとらわれず働くことができます
・Slackチャンネルの活用など、心理的安全性を意識した環境です
<募集部門の紹介>
・Lakehouse部部長 市村からのメッセージ
https://www.ap-com.co.jp/blog/archives/10351#article
・Lakehouse部 サービスページ
https://www.ap-com.co.jp/service/data_ai/
・Databricks Data+AI Summit 2025 現地レポート
https://www.ap-com.co.jp/data_ai_summit/
【募集背景】
データ収集がメインタスクになりAI戦略まで進まない等、国内でデータ&AIを活用している事例はまだ少ないと感じております。
当社は日本市場のデータ&AI文化を根本から変えたく、ビッグデータを使用したAIによる分析やデータ利活用等、データマネジメント事業を推進しております。
当求人では、 これまでにMicrosoft AzureやAWSのご利用経験をお持ちで、これからデータエンジニアのキャリアパスを希望される方を募集 しております。
【業務内容】
Lakehouse部では、クラウド上でデータの格納・処理・分析・機械学習まで一気通貫で扱える Lakehouse プラットフォームであるDatabricksを活用し、お客様にデータ&AIを活用いただけるよう、データやインフラ基盤の構築や内製化支援をしています。
本求人で採用する方には、これまでのクラウドインフラやデータ関連のご経験を基に、当部のデータエンジニア、データサイエンティストとしてのご活躍をお願いします。
採用後は、入社研修の後、下記の業務をお任せいたします。
・データ基盤環境(データレイク・DWH)の設計、構築
・各種データの収集、クレンジング、統合、最適化
・ETL/ELTパイプラインの設計、実装(Python,Airflow, dbtなど)
・ビッグデータ処理基盤の設計、運用(Spark、Hadoopなど)
・BIツール(Tableau、Power BIなど)向けのデータマート構築
・ユーザートレーニング、内製化の支援
【この仕事で得られること】
・大規模案件の提案経験
Databricks やMicrosoft など大手パートナー企業や大手顧客との商談に関与し、数千万規模の案件提案を経験できます。
・ータプラットフォーム領域での専門性
Databricks をはじめとしたクラウドデータ基盤の知見を身につけ、今後市場価値の高い人材として成長できます。
・キャリアの幅の拡張
クラウドインフラ、データエンジニア・サイエンスに加え、AI領域など、プロジェクトを通じてキャリアの幅を広げていただく事が可能です。将来的には、リーダーやマネジメントポジションへのチャレンジも大歓迎です。
・プロジェクト事例
製造業(自動車・ヘルスケア機器)や金融業、通信業界を中心に、Databricksを活用したデータ活用基盤の構築・生成AI導入プロジェクトが増加しています。
某製造系企業様:DatabricksとAWSを活用したストリーミング分析基盤の構築とCI/CD整備
某通信系企業様:社内技術文書の検索・要約AIアプリケーションの構築(RAG・OpenAI活用)
某金融系企業様:既存Oracle基盤からLakehouse環境への移行支援とデータパイプライン再構成
某化学メーカー様:AutoMLを用いた原材料価格の時系列予測モデルとダッシュボード実装
某家電メーカー様:TerraformによるDatabricks環境の再構築とコスト最適化PoC など
【業務の進め方の例】
案件開始~2週間
・データプラットフォームやプロダクト周辺のクラウド設計、構築(AzureやAWS)
・現状のデータの中身やフォーマットについてヒアリング
・Databricksを活用する計画について提案、データ内容や進め方に関する意見交換
1か月~2か月目
・データ利活用に向けた分析基盤のインフラ構築と整備(Databricks環境の構築等)
・データ利活用に向けたデータ整形とプロセスの整備
※最終的に「新規のデータが発生した際にお客様側でデータ追加・調整・再構成等が出来る状態」にするための整備
2か月~3か月目
・ダッシュボードの試作
・納品、仕様の説明や利活用についてお客様への説明
【キャリアアップへの支援】
案件や研修の他に下記を提供しており、データエンジニアとしてのキャリアを築くことが可能です。
・Databricks社の研修ドキュメントの提供しています。
・毎週、新入社員向けのフォローアップをチーム全体で実施しています。
・朝会やチーム定例会議等、相談や情報共有の場が豊富です。
メンバー同士フォローし合いながら業務を行っています。
・LTや技術ブログの執筆、技術の情報交換等、インプットとアウトプットの場が豊富です。
【メンバー構成】
2022年に新設されたばかりで、様々なバックグラウンドをもつ幅広い世代が集まった多様性の高いチームです
※男女比 1:1 とバランスの取れたチーム構成
部長:1名
プロジェクトマネージャー:2名
エンジニアリングマネージャー:1名
データエンジニア/サイエンティスト、インフラエンジニア:7名
プリセールス、セールス&マーケティング:数名(他部門と兼務で対応中)
【参考情報】
Lakehouse部の取り組みが分かる参考情報
・Databricks関連 技術ブログ記事一覧
https://techblog.ap-com.co.jp/search?q=Databricks
・Databricks「Data + AI Summit 2025」 現地レポート
https://www.ap-com.co.jp/blog/archives/11852#article
・Databricks活用の無料トレーニングイベント「Data & AI BootCamp」レポート
https://www.ap-com.co.jp/blog/archives/11701#article
・社内向け講座紹介 「AI・データ解析プラットフォーム Databricks を体験しよう!」
https://www.ap-com.co.jp/blog/archives/11584#article
・産学連携 岩手大学で生成AIセミナーを開催!
https://www.ap-com.co.jp/blog/archives/11107#article
【業務の変更の範囲】
会社の定める範囲
募集部門について
当求人はGlobal Data+AI事業部 Lakehouse部の求人となります。
<Global Data+AI事業部>
グローバルSI案件における提案・PMを中心に手がけるグローバルエンジニアリング部と、
データ&AI分析基盤の構築や内製化の支援を行うLakehouse部で構成される事業部です。ITインフラ、データAI基盤、Webアプリ開発や運用まで一気通貫してサポートできることを強みとしています。
<グローバルエンジニアリング部>
「技術力」と「英語力」の両方が備わったグローバルエンジニアとしてのキャリアに挑戦出来る環境です。部内の公用語を英語で、社内ミーティングも英語で行っています。
<Lakehouse部>
インフラエンジニア、データエンジニア、データサイエンティスト、MLエンジニアと色々な強みを持ったメンバー多数。外国籍の方や女性が多いのが特徴です。
①カルチャー
・設立4年目の比較的若い組織で、フラットな文化
・一人ひとりが自立しつつ、互いにリスペクトを持ち支え合うことを大切にしています
・インプット&アウトプット文化があり、技術ブログ執筆や国内外イベント参加も行っています
②業務環境
・Databricks、Microsoftとパートナー契約を締結しており、学習&検証環境が充実
・メンバーのバックグラウンドを活かし、多様な視点から意見を出し、品質を高めています
③ワークライフバランス
・管理者含め育児をしながら働くメンバーもおり、ワークライフバランスへの理解が高い職場です
・平時は原則リモートワークとなるため、居住地域にとらわれず働くことができます
・Slackチャンネルの活用など、心理的安全性を意識した環境です
<募集部門の紹介>
・Lakehouse部部長 市村からのメッセージ
https://www.ap-com.co.jp/blog/archives/10351#article
・Lakehouse部 サービスページ
https://www.ap-com.co.jp/service/data_ai/
・Databricks Data+AI Summit 2025 現地レポート
https://www.ap-com.co.jp/data_ai_summit/
【募集背景】
データ収集がメインタスクになりAI戦略まで進まない等、国内でデータ&AIを活用している事例はまだ少ないと感じております。
当社は日本市場のデータ&AI文化を根本から変えたく、ビッグデータを使用したAIによる分析やデータ利活用等、データマネジメント事業を推進しております。
当求人では、 これまでにMicrosoft AzureやAWSのご利用経験をお持ちで、これからデータエンジニアのキャリアパスを希望される方を募集 しております。
【業務内容】
Lakehouse部では、クラウド上でデータの格納・処理・分析・機械学習まで一気通貫で扱える Lakehouse プラットフォームであるDatabricksを活用し、お客様にデータ&AIを活用いただけるよう、データやインフラ基盤の構築や内製化支援をしています。
本求人で採用する方には、これまでのクラウドインフラやデータ関連のご経験を基に、当部のデータエンジニア、データサイエンティストとしてのご活躍をお願いします。
採用後は、入社研修の後、下記の業務をお任せいたします。
・データ基盤環境(データレイク・DWH)の設計、構築
・各種データの収集、クレンジング、統合、最適化
・ETL/ELTパイプラインの設計、実装(Python,Airflow, dbtなど)
・ビッグデータ処理基盤の設計、運用(Spark、Hadoopなど)
・BIツール(Tableau、Power BIなど)向けのデータマート構築
・ユーザートレーニング、内製化の支援
【この仕事で得られること】
・大規模案件の提案経験
Databricks やMicrosoft など大手パートナー企業や大手顧客との商談に関与し、数千万規模の案件提案を経験できます。
・ータプラットフォーム領域での専門性
Databricks をはじめとしたクラウドデータ基盤の知見を身につけ、今後市場価値の高い人材として成長できます。
・キャリアの幅の拡張
クラウドインフラ、データエンジニア・サイエンスに加え、AI領域など、プロジェクトを通じてキャリアの幅を広げていただく事が可能です。将来的には、リーダーやマネジメントポジションへのチャレンジも大歓迎です。
・プロジェクト事例
製造業(自動車・ヘルスケア機器)や金融業、通信業界を中心に、Databricksを活用したデータ活用基盤の構築・生成AI導入プロジェクトが増加しています。
某製造系企業様:DatabricksとAWSを活用したストリーミング分析基盤の構築とCI/CD整備
某通信系企業様:社内技術文書の検索・要約AIアプリケーションの構築(RAG・OpenAI活用)
某金融系企業様:既存Oracle基盤からLakehouse環境への移行支援とデータパイプライン再構成
某化学メーカー様:AutoMLを用いた原材料価格の時系列予測モデルとダッシュボード実装
某家電メーカー様:TerraformによるDatabricks環境の再構築とコスト最適化PoC など
【業務の進め方の例】
案件開始~2週間
・データプラットフォームやプロダクト周辺のクラウド設計、構築(AzureやAWS)
・現状のデータの中身やフォーマットについてヒアリング
・Databricksを活用する計画について提案、データ内容や進め方に関する意見交換
1か月~2か月目
・データ利活用に向けた分析基盤のインフラ構築と整備(Databricks環境の構築等)
・データ利活用に向けたデータ整形とプロセスの整備
※最終的に「新規のデータが発生した際にお客様側でデータ追加・調整・再構成等が出来る状態」にするための整備
2か月~3か月目
・ダッシュボードの試作
・納品、仕様の説明や利活用についてお客様への説明
【キャリアアップへの支援】
案件や研修の他に下記を提供しており、データエンジニアとしてのキャリアを築くことが可能です。
・Databricks社の研修ドキュメントの提供しています。
・毎週、新入社員向けのフォローアップをチーム全体で実施しています。
・朝会やチーム定例会議等、相談や情報共有の場が豊富です。
メンバー同士フォローし合いながら業務を行っています。
・LTや技術ブログの執筆、技術の情報交換等、インプットとアウトプットの場が豊富です。
【メンバー構成】
2022年に新設されたばかりで、様々なバックグラウンドをもつ幅広い世代が集まった多様性の高いチームです
※男女比 1:1 とバランスの取れたチーム構成
部長:1名
プロジェクトマネージャー:2名
エンジニアリングマネージャー:1名
データエンジニア/サイエンティスト、インフラエンジニア:7名
プリセールス、セールス&マーケティング:数名(他部門と兼務で対応中)
【参考情報】
Lakehouse部の取り組みが分かる参考情報
・Databricks関連 技術ブログ記事一覧
https://techblog.ap-com.co.jp/search?q=Databricks
・Databricks「Data + AI Summit 2025」 現地レポート
https://www.ap-com.co.jp/blog/archives/11852#article
・Databricks活用の無料トレーニングイベント「Data & AI BootCamp」レポート
https://www.ap-com.co.jp/blog/archives/11701#article
・社内向け講座紹介 「AI・データ解析プラットフォーム Databricks を体験しよう!」
https://www.ap-com.co.jp/blog/archives/11584#article
・産学連携 岩手大学で生成AIセミナーを開催!
https://www.ap-com.co.jp/blog/archives/11107#article
【業務の変更の範囲】
会社の定める範囲
| 想定年収 | 450 〜 650 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 10:00~18:30(休憩時間 12:00~13:00)※ 所定労働時間 7.5時間
働き方: 固定時間制(9時~18時、10時~19時など) 時間外労働の有無: 有(月平均20時間) 休憩時間: 60分 |
||
| 設立年数 | 32年 | 従業員数 | 500人 |
株式会社テックオーシャン
【首都圏フルリモート/データサイエンティスト/実務4年~】理系・テクノロジー人材と企業のマッチングサービス&新規プロダクトリリース! のリモートワーク求人
プロダクトや事業におけるデータ活用をリードしていただきます。
分散したデータ基盤を整備し、機械学習や統計的手法を用いた分析を行い、その成果をプロダクト改善や契約継続率の向上、経営判断の支援へとつなげていく役割を担っていただきます。
PdM・エンジニア・ビジネス部門と横断的に連携しながら、データドリブンな意思決定を推進していただきます。
【具体的な業務について】
- プロダクトDBや基幹システムなど分散したデータを統合し、分析可能なデータ基盤を構築・整備
- データ抽出や統合作業の自動化、BIツールの活用による可視化環境の整備
- 学生のオファー受諾率等、プロダクトの成果指標に影響する要因の分析と改善施策の提案・実行
- 契約継続率向上のための解約リスク分析や成功要因の特定、施策提案および効果測定
- ABテストや施策効果検証の設計・実行・モニタリング
- 経営KPIの定義と可視化、経営層へのレポーティングによる意思決定支援
- PdM・エンジニア・ビジネス部門と連携し、分析結果をプロダクト開発や事業施策に反映
- 社内におけるデータ活用文化の浸透、ナレッジ共有やメンバーへの教育・サポート
■ポジションの魅力
1. 事業インパクトの大きさ
・オファー受諾率や契約継続率といった 事業の成長に直結する重要指標に直接コミットできます。
・経営層やPdM・エンジニアと近い距離で働き、データ分析を施策やプロダクト改善に即時反映できるように進められます。
2. ゼロから仕組みをつくる経験
・専任のデータサイエンティスト第一号 として、分析基盤やデータ活用プロセスの構築を主導できます。
・既存の仕組みが未整備だからこそ、 裁量と自由度の高い環境 で試行錯誤しながら業務を進められます。
3. キャリア成長の可能性
・今後の事業成長や上場準備に伴い、データ組織の拡大が見込まれます。
・早期に参画することで、将来的には データチームのリーダーへキャリアを広げられる可能性があります。
・「データを活用して組織を変える経験」は市場価値の高いスキルを得ることができます。
■キャリアイメージ
当社のデータサイエンティストは、急成長する事業の中心で、データを起点とした意思決定やプロダクト改善に関わることができます。
事業規模の拡大に伴い、取り扱うデータの量や種類も増加しており、成長フェーズ特有のダイナミズムを実感しながら、自らの分析が直接事業成果へつながる経験を積むことが可能です。
また、データ組織はまだ小規模であるため、分析テーマの選定からアプローチの設計まで大きな裁量を持ち、幅広い領域にチャレンジできます。小さな組織だからこそ、基盤づくりや仕組み化に一から関わることができ、組織が拡大していくプロセスを間近で経験できるのも大きな魅力です。
将来的には、プロダクトデータを活用したオファー受諾率や契約継続率の改善に加え、経営層へのデータ提供や意思決定支援など、分析の幅をさらに広げていただきます。
これにより、データサイエンティストとしての専門性を深めつつ、事業成長と組織拡大を両輪で支えるキャリアを築くことができます。
【業務の変更の範囲】
その他会社サービスおよび運営に関わる業務一式
分散したデータ基盤を整備し、機械学習や統計的手法を用いた分析を行い、その成果をプロダクト改善や契約継続率の向上、経営判断の支援へとつなげていく役割を担っていただきます。
PdM・エンジニア・ビジネス部門と横断的に連携しながら、データドリブンな意思決定を推進していただきます。
【具体的な業務について】
- プロダクトDBや基幹システムなど分散したデータを統合し、分析可能なデータ基盤を構築・整備
- データ抽出や統合作業の自動化、BIツールの活用による可視化環境の整備
- 学生のオファー受諾率等、プロダクトの成果指標に影響する要因の分析と改善施策の提案・実行
- 契約継続率向上のための解約リスク分析や成功要因の特定、施策提案および効果測定
- ABテストや施策効果検証の設計・実行・モニタリング
- 経営KPIの定義と可視化、経営層へのレポーティングによる意思決定支援
- PdM・エンジニア・ビジネス部門と連携し、分析結果をプロダクト開発や事業施策に反映
- 社内におけるデータ活用文化の浸透、ナレッジ共有やメンバーへの教育・サポート
■ポジションの魅力
1. 事業インパクトの大きさ
・オファー受諾率や契約継続率といった 事業の成長に直結する重要指標に直接コミットできます。
・経営層やPdM・エンジニアと近い距離で働き、データ分析を施策やプロダクト改善に即時反映できるように進められます。
2. ゼロから仕組みをつくる経験
・専任のデータサイエンティスト第一号 として、分析基盤やデータ活用プロセスの構築を主導できます。
・既存の仕組みが未整備だからこそ、 裁量と自由度の高い環境 で試行錯誤しながら業務を進められます。
3. キャリア成長の可能性
・今後の事業成長や上場準備に伴い、データ組織の拡大が見込まれます。
・早期に参画することで、将来的には データチームのリーダーへキャリアを広げられる可能性があります。
・「データを活用して組織を変える経験」は市場価値の高いスキルを得ることができます。
■キャリアイメージ
当社のデータサイエンティストは、急成長する事業の中心で、データを起点とした意思決定やプロダクト改善に関わることができます。
事業規模の拡大に伴い、取り扱うデータの量や種類も増加しており、成長フェーズ特有のダイナミズムを実感しながら、自らの分析が直接事業成果へつながる経験を積むことが可能です。
また、データ組織はまだ小規模であるため、分析テーマの選定からアプローチの設計まで大きな裁量を持ち、幅広い領域にチャレンジできます。小さな組織だからこそ、基盤づくりや仕組み化に一から関わることができ、組織が拡大していくプロセスを間近で経験できるのも大きな魅力です。
将来的には、プロダクトデータを活用したオファー受諾率や契約継続率の改善に加え、経営層へのデータ提供や意思決定支援など、分析の幅をさらに広げていただきます。
これにより、データサイエンティストとしての専門性を深めつつ、事業成長と組織拡大を両輪で支えるキャリアを築くことができます。
【業務の変更の範囲】
その他会社サービスおよび運営に関わる業務一式
| 想定年収 | 700 〜 1,000 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 | |||
| 企業概要 |
■同社について:
私たちテックオーシャンは「人と組織の可能性を最大化し、豊かな暮らしと社会をつくる」をビジョンに理系人材と採用企業のマッチングサービスを行っています。理系人材の就職活動は課題が多く、大学で学んで得た知識や能力、個性を活かすことができず、「TECH(TechnorogyやTechnique)」を埋もれさせてしまう若者がたくさんいます。近年、IoTやDX・AIなどの需要の伸びに伴い、理系人材の需要が高まっております。同社代表の長井は、理系採用支援事業に約15年携わっているパイオニアであり、テックオーシャンがTECH人材領域におけるライフパートナーになれるよう事業拡大をしていきます。 【あらゆるTECHを社会につなぐTECH領域のDX企業】 テクノロジーにより進化し続ける現代社会において、TECH人材(TechnologyやTechniqueを有する人材)の専門性は、あらゆる産業で必要とされています。 同社は TECH 人材とTECHの価値を可視化して、社会に解き放ち、それぞれが伸び伸びと活躍するTECHの海(エコシステム)を作ります。 このエコシステムは「若者が気付きと刺激とフィールドを得るインフラ」となり、世界中の子供たちが明るい未来を達成する礎となります。 ・理工系専用就活サイト TECH OFFERの企画・運営 |
||
| 設立年数 | 9年 | 従業員数 | 60人 |
株式会社カケハシ
【地方フルリモート◎×自社プロダクト×新規事業】医療薬局業界 データサイエンティスト★ のリモートワーク求人
■お仕事内容
新規事業において、以下のような業務に従事していただきます。
<具体的な業務イメージ>
・医薬品市場や処方実態の分析を通じた、患者・医療従事者の行動変容を促すプロダクト/サービス開発への貢献
・NSM/KPI設計、データの可視化など、プロダクト改善に向けた意思決定支援
・分析基盤構築に向けたデータマートやDWH設計・構築の支援
■チーム構成
正社員4名(EM1名 DS/DA 3名)
本件は、開発組織としての募集です。
医療データ専門のアナリストチーム(3名)と協業し、ビジネス視点とプロダクト視点の両軸からサービス開発を推進しています。
■ポジションの魅力
・医療の未来に直結するチャレンジ:単なる分析業務ではなく「患者中心の医療体験」創出に深く関わることができます
・裁量と責任のある環境:仮説構築から分析、意思決定支援まで一貫して携わることができ、プロダクトへの影響力も大きいです
・データを「価値」に変える実感:蓄積されるリアルな医療データを活かし、実社会にインパクトを与えるプロダクトの改善に貢献できます
・成長中のスタートアップでの経験:変化の速い環境でスピード感を持って意思決定し、実装していく経験が得られます
■募集背景
▼患者中心の医療体験をデータで支える挑戦者を募集
カケハシでは、調剤薬局向けプロダクトを提供することで、これまで主に薬局の業務支援や
業務効率化を実現してきました。しかし、今後の医療をより良くしていくためには、
薬局と協業し「患者中心の医療体験」の起点と位置づけ、患者さん自身が医療に対して
前向きに関与(Patient Engagement)できる仕組みを支援することが不可欠だと考えています。
このビジョンを実現するため、私たちは薬局業務データやプロダクトを通じて蓄積される
個人データを活用し、患者の行動や意識の変化を可視化、分析し、行動変容を促すサービスを
開発しています。その中核を担うのがデータサイエンティスト です。
データを通じて、患者・薬局・医療従事者それぞれのニーズや接点を深く理解し、
プロダクトやサービスに価値あるインサイトを届けてくれる仲間を求めています。
■社内の生成AI利用状況
カケハシでは、生成AIをプロダクト活用のみならず、生産性向上にも積極的に活用しています。
部門横断のAI活用コミュニティが存在しており、エンジニアやPdM、デザイナーが知見共有や勉強会を不定期に実施しており、
全社で良い活用を模索しています。勉強会の様子はこちらでご確認いただけます。
(利用できるツールとしては、後述の開発環境欄をご覧ください。)
https://kakehashi-dev.hatenablog.com/entry/2025/04/02/154827
また、責任ある医療情報を取り扱っているため、セキュリティリスク等に対処するためのガイドラインを社内で策定しており、生産性と安心安全を両立する工夫も行っています。
■関連記事
▼カケハシ技術ブログ
https://kakehashi-dev.hatenablog.com/
【業務の変更の範囲】
会社の規定に準ずる
新規事業において、以下のような業務に従事していただきます。
<具体的な業務イメージ>
・医薬品市場や処方実態の分析を通じた、患者・医療従事者の行動変容を促すプロダクト/サービス開発への貢献
・NSM/KPI設計、データの可視化など、プロダクト改善に向けた意思決定支援
・分析基盤構築に向けたデータマートやDWH設計・構築の支援
■チーム構成
正社員4名(EM1名 DS/DA 3名)
本件は、開発組織としての募集です。
医療データ専門のアナリストチーム(3名)と協業し、ビジネス視点とプロダクト視点の両軸からサービス開発を推進しています。
■ポジションの魅力
・医療の未来に直結するチャレンジ:単なる分析業務ではなく「患者中心の医療体験」創出に深く関わることができます
・裁量と責任のある環境:仮説構築から分析、意思決定支援まで一貫して携わることができ、プロダクトへの影響力も大きいです
・データを「価値」に変える実感:蓄積されるリアルな医療データを活かし、実社会にインパクトを与えるプロダクトの改善に貢献できます
・成長中のスタートアップでの経験:変化の速い環境でスピード感を持って意思決定し、実装していく経験が得られます
■募集背景
▼患者中心の医療体験をデータで支える挑戦者を募集
カケハシでは、調剤薬局向けプロダクトを提供することで、これまで主に薬局の業務支援や
業務効率化を実現してきました。しかし、今後の医療をより良くしていくためには、
薬局と協業し「患者中心の医療体験」の起点と位置づけ、患者さん自身が医療に対して
前向きに関与(Patient Engagement)できる仕組みを支援することが不可欠だと考えています。
このビジョンを実現するため、私たちは薬局業務データやプロダクトを通じて蓄積される
個人データを活用し、患者の行動や意識の変化を可視化、分析し、行動変容を促すサービスを
開発しています。その中核を担うのがデータサイエンティスト です。
データを通じて、患者・薬局・医療従事者それぞれのニーズや接点を深く理解し、
プロダクトやサービスに価値あるインサイトを届けてくれる仲間を求めています。
■社内の生成AI利用状況
カケハシでは、生成AIをプロダクト活用のみならず、生産性向上にも積極的に活用しています。
部門横断のAI活用コミュニティが存在しており、エンジニアやPdM、デザイナーが知見共有や勉強会を不定期に実施しており、
全社で良い活用を模索しています。勉強会の様子はこちらでご確認いただけます。
(利用できるツールとしては、後述の開発環境欄をご覧ください。)
https://kakehashi-dev.hatenablog.com/entry/2025/04/02/154827
また、責任ある医療情報を取り扱っているため、セキュリティリスク等に対処するためのガイドラインを社内で策定しており、生産性と安心安全を両立する工夫も行っています。
■関連記事
▼カケハシ技術ブログ
https://kakehashi-dev.hatenablog.com/
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 700 〜 1,050 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 | |||
| 企業概要 |
カケハシは「日本の医療体験を、しなやかに。」というミッションの元、薬局向けに電子薬歴SaaSを提供する300名程度のヘルスケアスタートアップです。
国内に約6万店(コンビニエンスストアは全国で約5万5千店)存在する薬局ですが、まだまだレガシーな環境が残されており、テクノロジーを用いて変革しうる余地があるとともに成長可能性が高いマーケットでもあります。 患者の健康に寄り添える場所として、薬局から医療体験を変革していきたいという創業の想いを具現化するため、既存事業に続き新事業にも取り組み始めています。 #薬局体験アシスタント|Musubi #薬局経営”見える化”クラウド|Musubi Insight #おくすり連絡帳|Pocket Musubi #医薬品在庫管理・発注システム|Musubi AI在庫管理 #医薬品二次流通サービス|Pharmarket #薬局・薬剤師コミュニティ|MusuViva! |
||
| 設立年数 | 11年 | 従業員数 | 200人 |
株式会社カケハシ
【地方フルリモート◎×自社プロダクト×新規事業】医療薬局業界 シニアデータアナリスト★ のリモートワーク求人
■お仕事内容
[患者中心の医療体験をデータで支える挑戦者を募集]
カケハシでは、調剤薬局向けプロダクトを提供することで、これまで主に薬局の業務支援や業務効率化を実現してきました。
しかし、今後の医療をより良くしていくためには、薬局と協業し「患者中心の医療体験」の起点と位置づけ、
患者さん自身が医療に対して前向きに関与(“Patient Engagement”)できる仕組みを支援することが不可欠だと考えています。
このビジョンを実現するため、私たちは薬局業務データやプロダクトを通じて蓄積される個人データを活用し、患者の行動や意識の変化を可視化、分析し、行動変容を促すサービスを開発しています。
その中核を担うのがデータアナリストです。
データを通じて、患者・薬局・医療従事者それぞれのニーズや接点を深く理解し、プロダクトやサービスに価値あるインサイトを届けてくれる仲間を求めています。
<具体的な業務イメージ>
・医薬品市場や処方実態の分析を通じた、患者・医療従事者の行動変容を促すプロダクト/サービス開発への貢献
・NSM/KPI設計、データの可視化など、プロダクト改善に向けた意思決定支援
・分析基盤構築に向けたデータマートやDWH設計・構築の支援
■ポジションの魅力
・医療の未来に直結するチャレンジ:単なる分析業務ではなく「患者中心の医療体験」創出に深く関わることができます
・裁量と責任のある環境:仮説構築から分析、意思決定支援まで一貫して携わることができ、プロダクトへの影響力も大きいです
・データを「価値」に変える実感:蓄積されるリアルな医療データを活かし、実社会にインパクトを与えるプロダクトの改善に貢献できます
・成長中のスタートアップでの経験:変化の速い環境でスピード感を持って意思決定し、実装していく経験が得られます
■チーム構成
正社員4名(EM1名 DS/DA 3名)
本件は、開発組織としての募集です。
医療データ専門のアナリストチーム(3名)と協業し、ビジネス視点とプロダクト視点の両軸からサービス開発を推進しています。
■社内の生成AI利用状況
カケハシでは、生成AIをプロダクト活用のみならず、生産性向上にも積極的に活用しています。部門横断のAI活用コミュニティが存在しており、
エンジニアやPdM、デザイナーが知見共有や勉強会を不定期に実施しており、全社で良い活用を模索しています。
勉強会の様子はこちらでご確認いただけます。(利用できるツールとしては、開発環境欄をご覧ください。)
https://kakehashi-dev.hatenablog.com/entry/2025/04/02/154827
また、責任ある医療情報を取り扱っているため、セキュリティリスク等に対処するためのガイドラインを社内で策定しており、生産性と安心安全を両立する工夫も行っています。
【業務の変更の範囲】
会社の規定に準ずる
[患者中心の医療体験をデータで支える挑戦者を募集]
カケハシでは、調剤薬局向けプロダクトを提供することで、これまで主に薬局の業務支援や業務効率化を実現してきました。
しかし、今後の医療をより良くしていくためには、薬局と協業し「患者中心の医療体験」の起点と位置づけ、
患者さん自身が医療に対して前向きに関与(“Patient Engagement”)できる仕組みを支援することが不可欠だと考えています。
このビジョンを実現するため、私たちは薬局業務データやプロダクトを通じて蓄積される個人データを活用し、患者の行動や意識の変化を可視化、分析し、行動変容を促すサービスを開発しています。
その中核を担うのがデータアナリストです。
データを通じて、患者・薬局・医療従事者それぞれのニーズや接点を深く理解し、プロダクトやサービスに価値あるインサイトを届けてくれる仲間を求めています。
<具体的な業務イメージ>
・医薬品市場や処方実態の分析を通じた、患者・医療従事者の行動変容を促すプロダクト/サービス開発への貢献
・NSM/KPI設計、データの可視化など、プロダクト改善に向けた意思決定支援
・分析基盤構築に向けたデータマートやDWH設計・構築の支援
■ポジションの魅力
・医療の未来に直結するチャレンジ:単なる分析業務ではなく「患者中心の医療体験」創出に深く関わることができます
・裁量と責任のある環境:仮説構築から分析、意思決定支援まで一貫して携わることができ、プロダクトへの影響力も大きいです
・データを「価値」に変える実感:蓄積されるリアルな医療データを活かし、実社会にインパクトを与えるプロダクトの改善に貢献できます
・成長中のスタートアップでの経験:変化の速い環境でスピード感を持って意思決定し、実装していく経験が得られます
■チーム構成
正社員4名(EM1名 DS/DA 3名)
本件は、開発組織としての募集です。
医療データ専門のアナリストチーム(3名)と協業し、ビジネス視点とプロダクト視点の両軸からサービス開発を推進しています。
■社内の生成AI利用状況
カケハシでは、生成AIをプロダクト活用のみならず、生産性向上にも積極的に活用しています。部門横断のAI活用コミュニティが存在しており、
エンジニアやPdM、デザイナーが知見共有や勉強会を不定期に実施しており、全社で良い活用を模索しています。
勉強会の様子はこちらでご確認いただけます。(利用できるツールとしては、開発環境欄をご覧ください。)
https://kakehashi-dev.hatenablog.com/entry/2025/04/02/154827
また、責任ある医療情報を取り扱っているため、セキュリティリスク等に対処するためのガイドラインを社内で策定しており、生産性と安心安全を両立する工夫も行っています。
【業務の変更の範囲】
会社の規定に準ずる
| 想定年収 | 700 〜 1,050 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 | |||
| 企業概要 |
カケハシは「日本の医療体験を、しなやかに。」というミッションの元、薬局向けに電子薬歴SaaSを提供する300名程度のヘルスケアスタートアップです。
国内に約6万店(コンビニエンスストアは全国で約5万5千店)存在する薬局ですが、まだまだレガシーな環境が残されており、テクノロジーを用いて変革しうる余地があるとともに成長可能性が高いマーケットでもあります。 患者の健康に寄り添える場所として、薬局から医療体験を変革していきたいという創業の想いを具現化するため、既存事業に続き新事業にも取り組み始めています。 #薬局体験アシスタント|Musubi #薬局経営”見える化”クラウド|Musubi Insight #おくすり連絡帳|Pocket Musubi #医薬品在庫管理・発注システム|Musubi AI在庫管理 #医薬品二次流通サービス|Pharmarket #薬局・薬剤師コミュニティ|MusuViva! |
||
| 設立年数 | 11年 | 従業員数 | 200人 |
株式会社インフォボックス
【東京/データサイエンティスト/フルリモート可】技術的リーダー経験×Python・TypeScript活用経験者 のリモートワーク求人
具体的な業務内容
・各種データのスクレイピング等での収集・前処理/後処理での補正処理・データ統合・可視化処理
・データ更新プロセスにおける品質保証や傾向値の分析
・現行データベース設計の課題分析と、将来を見据えた改善提案
・データガバナンス・セキュリティの方針検討と施策設計(ご経験に応じて)
・教師あり学習モデルを構築し、各企業情報に適切な特徴、属性、ラベル等を付与するプロセスの設計と実装(必須)
- アルゴリズム選定およびモデル設計
- データの収集(スクレイピング等)および前処理(クレンジング、正規化等)
- 教師あり学習モデルの構築とトレーニング
- モデル精度の評価および改善のための反復的なチューニング
担当領域
データサイエンティストとしてデータ分析・活用と品質保証
ビジネスデータ基盤を中心に、プロダクト全体の開発・設計にも連携しながら関与。
“機能”としてつくるのではなく、“価値”として届けるための設計思考を重視しています。
採用背景
2024年にプレシリーズAで16.5億円の資金調達を完了し、新規事業戦略とプロダクト構想が固まった現在、infoboxは次なるグロースフェーズへと移行しています。
これまで以上にプロダクトにおけるデータ活用の重要性が高まる中、データを事業成長の推進装置にできるデータサイエンティストの存在が必要不可欠なため、募集いたします。
お任せしたい役割とミッション
自社プロダクト「infobox」のデータ基盤は、まさにサービスの心臓部。
スケーラブルなデータアーキテクチャを設計・構築し、事業や各チームの意思決定を、データと仕組みで“前に進める”存在としてご活躍いただきます。
高い実装スキルはもちろん、「この設計や選定が、データの価値/成長につながるか?」という広い視点から、プロダクトやビジネスの変化に応じた最適な仕組みを構想・実現できる力を求めています。
特にこのポジションでは、既存の要件や依頼に応えるだけでなく、「そもそもこの要件でよいのか?」という問いから始め、技術・構造・ユーザー価値の観点から再定義する姿勢を重視しています。
プロダクトマネージャーや事業サイドとも議論を重ねながら、ユーザー価値・データ構造・技術的実現性を統合的に捉え、共に価値設計を進めていける“共同立案者”のような立ち位置でのご活躍を期待しています。
【業務の変更の範囲】
無
・各種データのスクレイピング等での収集・前処理/後処理での補正処理・データ統合・可視化処理
・データ更新プロセスにおける品質保証や傾向値の分析
・現行データベース設計の課題分析と、将来を見据えた改善提案
・データガバナンス・セキュリティの方針検討と施策設計(ご経験に応じて)
・教師あり学習モデルを構築し、各企業情報に適切な特徴、属性、ラベル等を付与するプロセスの設計と実装(必須)
- アルゴリズム選定およびモデル設計
- データの収集(スクレイピング等)および前処理(クレンジング、正規化等)
- 教師あり学習モデルの構築とトレーニング
- モデル精度の評価および改善のための反復的なチューニング
担当領域
データサイエンティストとしてデータ分析・活用と品質保証
ビジネスデータ基盤を中心に、プロダクト全体の開発・設計にも連携しながら関与。
“機能”としてつくるのではなく、“価値”として届けるための設計思考を重視しています。
採用背景
2024年にプレシリーズAで16.5億円の資金調達を完了し、新規事業戦略とプロダクト構想が固まった現在、infoboxは次なるグロースフェーズへと移行しています。
これまで以上にプロダクトにおけるデータ活用の重要性が高まる中、データを事業成長の推進装置にできるデータサイエンティストの存在が必要不可欠なため、募集いたします。
お任せしたい役割とミッション
自社プロダクト「infobox」のデータ基盤は、まさにサービスの心臓部。
スケーラブルなデータアーキテクチャを設計・構築し、事業や各チームの意思決定を、データと仕組みで“前に進める”存在としてご活躍いただきます。
高い実装スキルはもちろん、「この設計や選定が、データの価値/成長につながるか?」という広い視点から、プロダクトやビジネスの変化に応じた最適な仕組みを構想・実現できる力を求めています。
特にこのポジションでは、既存の要件や依頼に応えるだけでなく、「そもそもこの要件でよいのか?」という問いから始め、技術・構造・ユーザー価値の観点から再定義する姿勢を重視しています。
プロダクトマネージャーや事業サイドとも議論を重ねながら、ユーザー価値・データ構造・技術的実現性を統合的に捉え、共に価値設計を進めていける“共同立案者”のような立ち位置でのご活躍を期待しています。
【業務の変更の範囲】
無
| 想定年収 | 700 〜 1,200 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 【フレキシブルタイム】07:00-21:00
【コアタイム】11:00−16:00
【標準労働時間】9:00〜18:00
働き方: フレックス制(コアタイムあり) 時間外労働の有無: 有(月平均5時間) 休憩時間: 60分 |
||
| 設立年数 | 9年 | 従業員数 | 40人 |
トランス・コスモス株式会社
【首都圏ハイブリ/データサイエンティスト】クライアントへのデータ収集、分析、レポーティングを行うサービスのデータサイエンティスト募集! のリモートワーク求人
■お仕事内容
当社では機械学習、プロセスマイニングなどの最新AI技術を活用してお客様企業のCRMデータを解析し、顧客体験価値の向上や企業収益を拡大するための改善活動を行っております。
EC・金融・通信業界をはじめとした様々なお客様データを分析し、最新の分析スキルと課題発見・提案能力を伸ばすことができる職種です。
入社後は分析を行う部分だけでなく、分析結果をお客様へ報告する部分も担当いただき、
将来的にはお客様とのコミュニケーション窓口としてお客様のご要望をヒアリングし、アウトプットの要件定義を行う部分も担当いただきます。
入社初日はオフィスへ出社となりますが、その後は基本在宅勤務となります。(社員の99%はリモートワークで就業中)
<具体的な業務イメージ>
・CRMデータを対象としたSQLでの分析、Pythonを使った機械学習モデルの構築
・分析アウトプットの作成、お客様への報告
・サイト改善後の効果測定の実施、お客様への報告
■ポジションの魅力
・様々な業界のCRMデータを分析することができ、幅広い課題に対応出来るデータサイエンティストとして成長できます。
・最新の機械学習モデル構築(Amazon SageMaker)、SQL(SnowFlake)の実務活用ノウハウを習得できます。
・分析を行うだけでなく、発見した課題の原因考察と改善提案を行い、効果測定まで担当するので自分の分析結果がどれだけお客様の成果に繋がったか実感できます。
・物事を筋道立てて分析し、課題から対策を導くことで、論理的思考が身につきます。
■仕事で得られるスキル/キャリア
・機械学習(Amazon SageMaker)、SQL(SnowFlake)での分析スキル
・顧客折衝スキル
・報告書作成でのレポーティングスキル(PowerPoint、Amazon QuickSight)
・お客様へのプレゼンスキル
■入社後について
・合計50時間以上の課題設定、機械学習の専門研修を実施いたします。
・チーム配属後はアナリストとして既存案件のOJTで半年程度実務経験を積みながらスキルを習得いただきます。
(既存案件の業界:通信、金融、通販など)
■就業環境
・就業場所:東京都池袋・基本はリモートワークでの就業(社員の99%はリモートワークで就業中)
・チーム構成:配属予定先の課は6名(男性5名、女性1名)、所属部署は合計24名(男性19名、女性5名)
・リモートワーク用のWebカメラ/マイク/モニターは会社支給
・スキルアップ補助制度あり(書籍や外部研修受講が可能)
【業務の変更の範囲】
当社業務全般
当社では機械学習、プロセスマイニングなどの最新AI技術を活用してお客様企業のCRMデータを解析し、顧客体験価値の向上や企業収益を拡大するための改善活動を行っております。
EC・金融・通信業界をはじめとした様々なお客様データを分析し、最新の分析スキルと課題発見・提案能力を伸ばすことができる職種です。
入社後は分析を行う部分だけでなく、分析結果をお客様へ報告する部分も担当いただき、
将来的にはお客様とのコミュニケーション窓口としてお客様のご要望をヒアリングし、アウトプットの要件定義を行う部分も担当いただきます。
入社初日はオフィスへ出社となりますが、その後は基本在宅勤務となります。(社員の99%はリモートワークで就業中)
<具体的な業務イメージ>
・CRMデータを対象としたSQLでの分析、Pythonを使った機械学習モデルの構築
・分析アウトプットの作成、お客様への報告
・サイト改善後の効果測定の実施、お客様への報告
■ポジションの魅力
・様々な業界のCRMデータを分析することができ、幅広い課題に対応出来るデータサイエンティストとして成長できます。
・最新の機械学習モデル構築(Amazon SageMaker)、SQL(SnowFlake)の実務活用ノウハウを習得できます。
・分析を行うだけでなく、発見した課題の原因考察と改善提案を行い、効果測定まで担当するので自分の分析結果がどれだけお客様の成果に繋がったか実感できます。
・物事を筋道立てて分析し、課題から対策を導くことで、論理的思考が身につきます。
■仕事で得られるスキル/キャリア
・機械学習(Amazon SageMaker)、SQL(SnowFlake)での分析スキル
・顧客折衝スキル
・報告書作成でのレポーティングスキル(PowerPoint、Amazon QuickSight)
・お客様へのプレゼンスキル
■入社後について
・合計50時間以上の課題設定、機械学習の専門研修を実施いたします。
・チーム配属後はアナリストとして既存案件のOJTで半年程度実務経験を積みながらスキルを習得いただきます。
(既存案件の業界:通信、金融、通販など)
■就業環境
・就業場所:東京都池袋・基本はリモートワークでの就業(社員の99%はリモートワークで就業中)
・チーム構成:配属予定先の課は6名(男性5名、女性1名)、所属部署は合計24名(男性19名、女性5名)
・リモートワーク用のWebカメラ/マイク/モニターは会社支給
・スキルアップ補助制度あり(書籍や外部研修受講が可能)
【業務の変更の範囲】
当社業務全般
| 想定年収 | 400 〜 600 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: 9:00~17:50
※担当する案件により、多少前後する場合があります。
働き方: 固定時間制(9時~18時、10時~19時など) 時間外労働の有無: 有(月平均10時間~30時間) 休憩時間: 60分 |
||
| 企業概要 |
デジタルメディアに関わる幅広いサービスを展開し、お客様企業のプロモーションやビジネス課題の解決をトータルに支援します。 お客様企業のEC事業戦略やブランド戦略に合わせて、世界48の国と地域にワンストップサービスを提供しています。
|
||
| 設立年数 | 42年 | 従業員数 | 16,791人 |
株式会社ジール
<未経験OK!特別求人・数十名採用/年>【ハイブリット/ 東京・大阪/正社員(または契約社員)経験2年以上】ビッグデータ活用のプロフェッショナル集団で、市場価値の高いデータエンジニアスペシャリスト候補者募集! のリモートワーク求人
長期的な事業成長を見据えて、未経験から2ヶ月間の研修を経て、
データスペシャリストを目指していただくポジションを募集いたします。
研修を経て、クライアントのデータ活用を支えるプラットフォームの提案・設計・構築を担う、
データエンジニアとしてご活躍いただきます
【仕事内容】
2ヶ月間の研修を経て、データ分析の基盤を支えるエンジニアとして、下記の領域に関する技術・ツール等を扱いながら、データ分析基盤に関するプロジェクト(データプラットフォームの企画、設計、実装まで)において、様々な役割を担っていただきます。将来的には、プロジェクトリーダー・プロジェクトマネージャーとして活躍いただける機会があります。
・データ収集/抽出/連携
・データ蓄積/統合/加工
・データ可視化
【特徴】
データ活用に特化してきた当社のナレッジを研修という形でしっかり学んでいただき、ゼロから非常に市場価値の高いデータのスペシャリストを目指していただけます。
研修を経ての配属後も、先輩社員と一緒の案件にて経験を積み、ゆくゆくはプロジェクトリードする役割を期待しております。
データ活用に関する技術・ツールについて、マルチベンダーとして幅広く扱っており、将来的には、先端技術を含め様々な技術に触れていただける環境があります。
★未経験者多数活躍中★
データ活用は、データに関するテクニカルスキルが非常に重要となりますが、ビジネス課題に対して向き合っていく業務でもあり、ITエンジニア以外で培ったコミュニケーション能力・業務知見を活かしていただける環境です。
【業務の変更の範囲】
適正に応じて、会社の指示する業務への異動を命じることがある
データスペシャリストを目指していただくポジションを募集いたします。
研修を経て、クライアントのデータ活用を支えるプラットフォームの提案・設計・構築を担う、
データエンジニアとしてご活躍いただきます
【仕事内容】
2ヶ月間の研修を経て、データ分析の基盤を支えるエンジニアとして、下記の領域に関する技術・ツール等を扱いながら、データ分析基盤に関するプロジェクト(データプラットフォームの企画、設計、実装まで)において、様々な役割を担っていただきます。将来的には、プロジェクトリーダー・プロジェクトマネージャーとして活躍いただける機会があります。
・データ収集/抽出/連携
・データ蓄積/統合/加工
・データ可視化
【特徴】
データ活用に特化してきた当社のナレッジを研修という形でしっかり学んでいただき、ゼロから非常に市場価値の高いデータのスペシャリストを目指していただけます。
研修を経ての配属後も、先輩社員と一緒の案件にて経験を積み、ゆくゆくはプロジェクトリードする役割を期待しております。
データ活用に関する技術・ツールについて、マルチベンダーとして幅広く扱っており、将来的には、先端技術を含め様々な技術に触れていただける環境があります。
★未経験者多数活躍中★
データ活用は、データに関するテクニカルスキルが非常に重要となりますが、ビジネス課題に対して向き合っていく業務でもあり、ITエンジニア以外で培ったコミュニケーション能力・業務知見を活かしていただける環境です。
【業務の変更の範囲】
適正に応じて、会社の指示する業務への異動を命じることがある
| 想定年収 | 400 〜 450 万円/年 | 雇用形態 | 正社員 |
|---|---|---|---|
| 職種 | |||
| 開発経験 | |||
| 勤務形態 |
作業時間: フレックスタイム制
コアタイム:10:00~15:00
フレキシブルタイム:なし
休憩時間:60分
<標準労働時間帯>
9:00~18:00
働き方: フレックス制(コアタイムあり) 時間外労働の有無: 有(月平均19時間) 休憩時間: 60分 |
||
| 企業概要 |
ジールは、データ活用のプロフェッショナル集団/東証一部上場グループの中核企業です。
近年ではビッグデータ、クラウド、AI、IoTを活用した事例も増加し、顧客のDX推進を支援する立場にスコープを拡張しています。 顧客の大半は大手企業となっており、30年以上データ活用領域に特化してきたナレッジ/市場からの信頼が強固な経営基盤を支えています。 ■Mission:専門性と技術力、高度な分析ノウハウの提供 多様な企業活動の情報の価値転換というニーズに応えるため、私たちは「プロフェッショナルサービスの大衆化」をミッションとして掲げております。高い専門性を持った技術力、深い経験から得られた多様性のある高度な分析力をハイクオリティ&ローコストで提供することで、企業の競争優位確保に貢献することを私たちは使命としております。 ■Vision:100年企業の創造 私たちはビジョンとして「100年企業の創造」を掲げて、理想企業の創造に向け、「社員全員が燃える会社」を目指しています。理想企業とは「他者貢献」を通して誰よりも発展する企業です。そして、社員全員が燃え続ける会社が「100年企業」であると信じています。お客様に対する長期的な貢献を果たすことに最大の意義をもって事業活動に取り組んで参ります。 |
||
| 設立年数 | 15年 | 従業員数 | 411人 |
25件中 1件~10件
リモートワーク求人を探す
職種からリモートワーク求人を探す
- CTO
- VPoE
- テックリード
- ITコンサルタント
- ITアーキテクト
- プロジェクトマネージャー
- プロダクトマネージャー
- スクラムマスター
- PMO
- ブリッジSE
- プロジェクトリーダー
- webデザイナー
- UIUXデザイナー
- webディレクター
- デジタルマーケター
- ゲームデザイナー
- CGデザイナー
- インフラエンジニア
- SRE
- ネットワークエンジニア
- サーバーエンジニア
- セキュリティエンジニア
- システムエンジニア
- システムディレクター
- サーバーサイドエンジニア
- フロントエンドエンジニア
- マークアップコーダー
- iOSエンジニア
- Androidエンジニア
- ゲームエンジニア
- ゲームプランナー
- QAエンジニア
- テストエンジニア
- テスター
- AIエンジニア(DL/機械学習)
- データサイエンティスト
- データアナリスト
- BIエンジニア
- データベースエンジニア
- 社内SE
- ヘルプデスク
- テクニカルサポート
- CRE
開発経験からリモートワーク求人を探す
- Access
- ActionScript
- AD
- Android(Java)
- Angular
- Ansible
- AWS
- Azure
- C#
- C++
- CakePHP
- COBOL
- Cordova
- C言語
- Django
- EC-CUBE
- Electron
- Elixir
- Express.js
- Figma
- Firebase
- Flask
- Flutter
- FuelPHP
- GCP
- Go
- HTML/CSS
- Illustrator
- Java
- JavaScript
- Kotlin
- Kubernetes
- Laravel
- Linux
- MySQL
- Next.js
- Node.js
- Nuxt.js
- Objective-C
- Oracle
- Perl
- Photoshop
- PHP
- PL/SQL
- PostgreSQL
- Python
- R
- React
- React Native
- RPA(Biz Robo)
- RPA(UiPath)
- RPA(WinActor)
- Ruby on Rails
- Rust
- Salesforce
- SAP
- Scala
- Seasar2
- Sketch
- Spring
- Spring Boot
- SQL
- SQL Server
- Struts
- Swift
- Symfony
- Tableau
- Tensorflow
- Terraform
- Tresure Data
- TypeScript
- Unity
- VB
- VBA
- Vue.js
- WordPress
- Xamarin
- XD
働き方からリモートワーク求人を探す
リモートワークタイプからリモートワーク求人を探す
語学・国籍からリモートワーク求人を探す
Jobのタイトルが入ります
こちらの求人に応募します
Jobのタイトルが入ります
こちらの求人に応募します
への応募が完了しました。
ご応募ありがとうございます。
担当エージェントからの連絡をお待ちください。
Jobのタイトルが入ります
こちらの求人を辞退しますが間違いないですか?
への辞退が完了しました。
またのご応募お待ちしています。
既に応募済みの案件です。
求人への応募には
リラシクの利用を開始してください。
求人への応募にはご住所の入力が必要です。
予期せぬエラーが発生しました。